

Chapter 3

Model Description

3.1 Introduction

Painting a complete picture of the Product Development Project Model requires descriptions

from several perspectives. In this chapter I begin this process by depicting the model from three

relatively context-free vantage points. First the model itself is framed by defining its boundaries

and level of aggregation. In the second and largest portion of this chapter the model's inner

structure is depicted in increasing detail by describing phases, subsystems, and sectors. A table

of the foundations of the important model structures completes the model structure section. An

initial description and investigation of model behavior is the third vantage point. The sensitivity

tests identify the parameters which deserve special attention as the model is applied to specific

contexts.

Other perspectives are applied to expand the description and investigation of the model in

subsequent chapters. A signal processing model of a portion of the Product Development Project

Model is described and used to illustrate an alternative modeling approach in chapter 4. The

Python Development Project forms a specific context for the application of the model and its use

for policy analysis in chapter 5.

3.2 Model Boundary and Level of Aggregation

The model's scope and focus are reflected in the model boundary. Figure 3-1 delineates the

primary features included (endogenous), assumed (exogenous), and excluded (ignored) from the

Product Development Project Model. Among the most important model boundaries are the edges

of a single development project. This focuses the research on the inner workings of development

projects. While the interaction of projects in a multiple-project development environment can be

important (Wheelwright and Clark, 1992; Wheelwright and Sasser, 1991) an improved

understanding of the structure and behavior of single development projects is needed as a basis

for investigating multiple projects. Such as single project model can be replicated to build a

multiple-project model to investigate project interactions.

A second important boundary assumption is a stable development environment, process, and

organization throughout the project life. An example of an assumption about a stable

development process is the use of exogenous constants to describe the average duration required

to complete development activities. These values and function do not change during the

simulation. The potential impacts of relaxing the boundary assumptions are discussed in the

conclusions.

Ignored

Exogenous

Endogenous

Development
Technology
Evolution

Project
Targets

Development
Technology

Quality of
Practice

Inter-phase
process

constraints
Project

Performance

Resource
Effectiveness

Available
Resource
constraints

Development
Organization

priorities Development
Phases &
Sequence

Development
Organization

Evolution

Competing
projects

Post-development
operations

Resource
Quantity

Intra-phase
process

constraints

Error
Generation &

Discovery

Iteration
& Rework

Project
Scope

Quality
Assurance

Resource
Allocation

Coordination

Development
Organization's
Environment

Inter-phase
impacts

Figure 3-1: Product Development Project Model Boundary Diagram

Within the model boundary the level of aggregation focuses the research and model purpose. For

example the model simulates multiple interdependent development phases within a project.

Phases are defined around similar development activities such as product definition, design,

testing, and installation. Examples of a single development phase include the preparation of

construction drawings in a real estate development project, the writing of software code and the

testing of product prototypes.

Another important level of aggregation assumption concerns the fundamental units which flow

through projects. I assume that these units are "development tasks". Conceptually a development

task is an atomic unit of development work. Examples of development tasks might include the

selection of a pump, writing a line of computer code and installing a steel beam. The unit of

work used to describe a development task may differ among project phases. For example a

product definition phase might use product specifications as the basis for tasks whereas the

design phase of the same project might use lines of computer code. Tasks are assumed to be

uniform in size and fungible. This assumption becomes more accurate as task size decreases.

Therefore relatively small pieces of development work are selected as tasks. Fungibility is an

inherent characteristic of some development tasks (e.g. the delivery and placement of soils for a

roadbed). Many other development phases have interdependent but fungible tasks (e.g. software

code as in Abdel-Hamid, 1984). The Product Development Project Model provides for the

description of task dependencies both within and among phases, as described subsequently in the

Development Tasks sector. Tasks are also assumed to be small enough to be flawed or correct

but not partially flawed. This assumption also becomes more accurate as task size becomes

smaller. These assumptions concerning tasks help identify divisions among development phases

and development tasks.

I have disaggregated development within each phase into four activities: basework, quality

assurance, rework and coordination. Basework is the completion of a development task the first

time. Subsequent completions which are required to correct flaws or iterate for quality are

referred to as Rework. Rework includes all forms of iteration regardless of cause. The search for

flaws is Quality Assurance (QA) or Inspection. Flaws include errors which must be corrected for

product functionality and optional improvements for quality. Coordination is the integration of

the product development project among phases due to releasing and inheriting flawed tasks from

other phases.

Resources for each phase have been aggregated into a single labor type. This reflects an

assumption that other development resources such as testing machines and administrative

support are used in proportion to development labor. The primary model assumptions concerning

the level of aggregation are listed below.

• Development projects consist of a network of dependent phases under a project
management structure.

• The progress of a development phase can be reflected in the flow of development tasks
through and among development phases.

• Development tasks are small, uniform in size and either flawed or correct but not
partially flawed.

• Development occurs through four activities: basework, quality assurance, rework, and
coordination.

• The repair of flawed tasks for basic product functionality and optional iteration for quality
have similar characteristics and can be modeled together as Rework.

• Different resource types can be aggregated into a single labor group for each
development phase.

The Product development Project Model's boundary and level of aggregation focus the research.

The internal structure of the model which simulates a development project is described in the

next section.

3.3 Model Structure

3.3.1 Introduction

Operationally the model is a set of nonlinear ordinary differential equations. Appendix 3.1:

Model Equations provides a complete listing of those equations. The equations are arrayed to

allow the simulation of a flexible number of development phases and include many equations to

manage the modeling of multiple phases. This results in a high number of model parameters and

relationships in a network which is too complex to illustrate with multiple phase diagrams.

However diagrams of a single phase will be used for model description purposes with

explanations of deviations for multiple phases. Definitions of the model parameters used in the

model equations are given in Appendix 3.2: Model Parameters.

The model consists of a set of interrelated development phases and a set of project management

features. Each phase is customized to reflect a specific stage of product development. A phase

dependency network describes the forward flow of work through the project. Figure 3-2 shows a

simple phase dependency network for a real estate development project.

Concept
Design

Detailed
Design

Purchasing

Construction
 Planning

Construction
and

Installation

Figure 3-2: A Phase Dependency Network for a Development Project

Project phases are linked in several ways:

• Work flows in upstream phases constrain progress in dependent downstream phases. The

locations of these constraints are shown by the arrows in the project's phase dependency
network (Figure 3-1).

• Errors inherited by downstream phases from upstream phases corrupt downstream work.

• Inherited errors that are discovered in downstream phases are returned for correction to
the phase where the error was generated.

• Coordination with other phases is required by discovering inherited errors or having
errors generated within a phase discovered by downstream phases.

• Completion and expected completion dates of phases influence the project deadline. The
project deadline in turn influences phase deadlines.

• Poor schedule, quality, and cost performance in any phase increases the impacts of non
conformance to the project targets. Those project level impacts influence individual phase
targets.

The basis for the model structure is described below and summarized in Table 3-2, located after

the model subsystem descriptions.

3.3.2 Model Subsystems

The model is relatively large with approximately twenty five stocks for each development phase

and five project management stocks. For descriptive purposes the model has been disaggregated

into five subsystems (Figure 3-3): process structure, scope, resources, targets, and performance.

Subsystems have been further disaggregated into sectors. Subsystems and sectors are tightly

linked through shared parameters. For clarity these parameters are shown in each sector diagram

where the parameter is used.

Development Activites

Phase Dependencies

Process Structure

Effectiveness

Allocation among
Development Activites

Quantity

Resources

Cycle Time

Defect Rate

Cost

Deadline

Quality Goal

Budget

Targets

Project Scope

Rework

Scope

Performance

Figure 3-3: Model Subsystems

3.3.3 The Process Structure and Scope Subsystems

3.3.3.1 Introduction

Impacts of the development process and the amount of project work on performance are modeled

with the Process Structure and Scope subsystems. The Development Tasks subsystem describes

the nature of the development process, while the Scope subsystem simulates the original project

scope and increases due to rework. These subsystems include the Development Tasks, Internal

Errors, Upstream Errors and Downstream Errors sectors.

3.3.3.2 The Development Task Sector

The process structure portion of the model is one of the most important contributions of this

research to model structure. The Development Task sector is the core of how the Product

Development Project Model describes development processes. A diagram of the complete

Development Tasks Sector in shown in Figure 3-15. One of the most important interactions of

development process and resources occurs at the four development activities in the Development

Tasks sector. Each activity proceeds at the minimum pace allowed by its process and resources,

as modeled with the following equations:

QA_inspection_rate(Phase)=MIN(QA_Process_Limit(Phase),QA_Labor_Limit(Phase))

Rework(Phase)=MIN(RW_Process_Limit(Phase),RW_Labor_Limit(Phase))

Basework(Phase)=MIN(BW_Process_Limit(Phase),BW_Labor_Limit(Phase))

Coordination(Phase)=MIN(Coord_Process_Limit(Phase),Coord_Labor_Limit(Phase))

Figure 3-4 illustrates the two feedback loops which are the basis for the process structure. The

balancing loop depicts the reduction in the number of tasks available for Basework as work is

completed. In this loop the Basework rate is based on the Tasks Available for Basework and the

Minimum Basework Duration. An increase in the Basework rate increases the number of Tasks

Completed, which decreases the number of Tasks Available for Basework, which reduces the

Basework rate. This loop introduces the first of two types of parameters used to describe the

development process in a phase, the Minimum Activity Duration. The Minimum Activity

Duration is the average time required to complete a task if all required information, materials and

resources are available and no flaws are generated. It describes the purest time constraint which

the process imposes on progress by answering the question "How fast on average can a task be

completed if everything needed is available?" All four development activities (basework, quality

assurance, rework and coordination) apply this concept. This allows more detailed and accurate

descriptions of a development process than by modeling a single development activity. In Figure

3-4 the Minimum Activity Duration is applied to basework. Feedback loops similar to the

balancing loop shown in Figure 3-4 are used to describe the role of the Minimum Quality

Assurance Duration in discovering flawed tasks, the Minimum Rework Duration in correcting

flawed tasks, and the Minimum Coordination Duration in integrating development project

phases.

Tasks Available
for Basework

+

Basework
rate

Tasks Comple
& Tasks Wait
to be Comple

Tasks
Completed

+

R

+
-

B

Internal
Precedence
Relationship
constraint

Minimum
Basework
Duration

+

Number of Tasks
in Project Scope

-

+

-

Figure 3-4: A Development Process Feedback Structure

The reinforcing loop shown in Figure 3-4 models the increase in the number of tasks which are

available to the basework activity due to the completion of work. In this loop an increased

basework rate raises the number of Tasks Completed, which raises the total number of tasks

which can be completed. The total number of tasks which can be completed includes both tasks

which have been completed and tasks which are available and waiting to be completed. This

quantity of tasks is also dependent on the nature of the development process as described by the

process's Internal Precedence Relationship. Increasing the number of Tasks Completed &

Waiting to be Completed raises the Tasks Available for Basework and thereby further raises the

Basework rate. The reinforcing loop introduces the second type of descriptor of specific

development processes, the Internal Precedence Relationship. Internal Precedence Relationships

describe the availability of work based solely on the amount of work which has been completed.

Erecting structural steel for a ten story building one story at a time from the ground up provides

an example of an Internal Precedence Relationship. Initially 0% is Completed and only the first

floor (10%) is Completed or Available to be Completed. When the first floor of steel is erected

10% is Completed and the second floor (another 10%) becomes available, making 20%

Completed or Waiting to be Completed. This linear progression continues until the completion of

the ninth floor (90% Completed) releases the final floor for completion (100% Completed or

Waiting to be Completed). A graphic function which describes this Internal Precedence

Relationship is shown in Figure 3-5. The Internal Precedence Relationship describes the

available-work constraint which a development process imposes on itself by answering the

question "How much work can be completed based upon how much work has been completed?"

Figure 3-5: A Linear Internal Precedence Relationship

An advantage of the system dynamics methodology and the model structure used here is the

ability to describe nonlinear Internal Precedence Relationships (Graham 1980). This allows

varying degrees of concurrent development within a single phase can be described with Internal

Precedence Relationships by altering the shape of the curve in the graphical function. The

Internal Precedence Relationship example shown in Figure 3-6 is based upon the design of code

for the development of a computer chip. Documentation for the shape of the curve is provided in

a later chapter. Initially a few very important blocks of code must be designed. This is the reason

for the flat portion of the curve on the left side of the function. Their completion makes the

design of many more blocks possible. This is the reasoning behind increasing rate of availability

in the left portion of the curve. The increase in available work slows as the design nears

completion and the blocks of code must be integrated. This produces the flat "tail" of the curve.

Figure 3-6: A Nonlinear Internal Precedence Relationship

A development process's Internal Precedence Relationship describes the available work

constraints which the tasks aggregated into a single phase impose on each other. It estimates the

impacts of the dependency network which exists among the phase's tasks. For example if the

erection of structural steel for a high-rise building was the phase the Internal Precedence

Relationship would reflect that columns must be installed before the beams which they support.

These constraints can act as a bottleneck in the availability of work. Most previously published

system dynamics models of projects have assumed that all uncompleted tasks are available for

completion (e.g. Abdel-Hamid, 1984; Richardson and Pugh, 1981; Roberts, 1974). This

assumption implies that all tasks are independent and could be performed in parallel and that the

nature of the development process imposes no constraints on the number of tasks available for

completion. However product development research (e.g. Rosenthal, 1992; Clark and Fujimoto,

1991) and the steel erection example above show that processes can and frequently do internally

constrain the availability of work.

The stock and flow structure of the development process within a single phase follows from the

feedback structure shown in Figure 3-4. Development tasks flow into and through three stocks:

the Completed not Checked, Known Rework, and Checked & Released stocks (Figure 3-7).

Known Rework

Work to be Done
Basework

Find Flawed Tasks

Rework Tasks

Completed not Checked Checked & Released

Release Tasks

Figure 3-7: Process Structure Stocks and Flows (Single Phase)

Tasks are completed for the first time through the performance of basework. They accumulate in

the Completed not Checked stock. If no tasks are flawed or those flaws are not found tasks leave

the Completed not Checked stock and pass through the Release Tasks flow into the Checked &

Released stock. This represents delivering tasks to the managers of downstream phases or to

customers. Flawed tasks are modeled in the Errors sectors. Tasks which are found to be flawed

flow to the Known Rework stock. The Rework flow returns corrected tasks to the Completed,

not Checked stock for inspection. The following stock equations describe these accumulations

explicitly.

Tasks_Completed(Phase)=Tasks_Completed(Phase)+dt*(Basework(Phase)+
Rework(Phase)-Release_Tasks(Phase)-RW_due_to_InPhase_QA(Phase))

Known_Rework(Phase)=Known_Rework(Phase)+dt*
(RW_due_to_InPhase_QA(Phase)-Rework(Phase))

Tasks_Released(Phase)=Tasks_Released(Phase)+dt*(Release_Tasks(Phase)

Figure 3-8 shows the process structure for a single phase with auxiliary parameters.

Number of Tasks

Min QA Duration

Total Tasks Available

Known Rework
Find Flawed Tasks

Rework Tasks

Min Rework Duration

probability Flaw found if exists

Quality Assurance rate

Known Rework

probability Task has Flaw

Min Basework Duration

Tasks Completed & Released

Completed not Checked

Basework

Tasks Available for Basework

~
Internal Precedence Relationship

Checked & Released

Release Tasks

Percent Completed & Released

Figure 3-8: Process Structure (Single Phase)

The form taken by the limits on progress imposed by the development process structure for each

of the four development activities are similar. A phase's demand for each activity (Basework,

Quality Assurance, Rework and Coordination) is the number of tasks available for the activity.

The general process limit equation is:

Development Activity Process Limit =
Tasks Available for the Activity

Minimum Activity Duration

Minimum Activity Durations describe the relative difficulty of the four development activities.

The structures which describe the development activities will be described in increasing

complexity from Rework to Coordination to Quality Assurance to Basework.

The Rework flow structure is the simplest. The value of the Tasks Available for the Activity

parameter in the equation above for the Rework flow is the number of tasks in the Known

Rework stock. The formulation assumes that all tasks in the rework stock are independent. The

Rework process limit equation is:

Rework Process Limit =
Known Rework

Minimum Rework Duration

Demand for the Coordination activity is the Coordination Backlog. Since coordination is the

interaction of developers across phases it is required only for multiple phases. This stock is the

accumulation of the sum of the tasks which have been corrupted due to inheriting flawed tasks

from upstream and the flawed tasks which have been released and returned by downstream

development phases less the tasks which have been coordinated. Figure 3-15 shows this

structure. The Coordination process limit equation is:

Coordination Process Limit =

Coordination Backlog
Minimum Coordination Duration

The value of the Tasks Available for the Activity parameter for the Quality Assurance rate is the

number of tasks which have been completed but not yet checked. This is the Completed not

Checked stock. Therefore the Quality Assurance process limit equation is:

Quality Assurance Process Limit =
Completed not Checked
Minimum QA Duration

Quality Assurance is the basis for two flows. The first flow is the Find Flawed Tasks flow which

depends on the Quality Assurance rate and the effectiveness of those efforts at finding flawed

tasks. Quality assurance effectiveness is measured with the probability of finding a flawed task.

This is the product of the probability of finding a flaw if it exists and the probability of a task

being flawed. Therefore the Find Flawed Tasks equation is:

Find Flawed Tasks =
Completed not Checked
Minimum QA Duration * p(Flaw found if exists) * p(Task is Flawed)

The probability of a flawed task being found if it exists is based upon the adequacy of the quality

assurance effort, as measured by the ratio of the quality assurance labor applied to the quality

assurance labor required. This is described in the resources sector of the model. The probability

that a task is flawed is the ratio of the number of unchecked flawed tasks (in the Internal Errors

sector) to the total number of unchecked tasks.

The second flow driven by Quality Assurance is the Release Tasks flow. All tasks which are

checked leave the Completed not Checked stock. Those that are found to be flawed are sent to

the Known Rework stock as described above. Tasks which are found to be unflawed (those

without flaws and those with flaws that were missed) are released. Therefore the equation for the

process limit on the Release Tasks flow is the total number of tasks checked less those found to

have flaws:

Release Tasks = Quality Assurance rate - Find Flawed Tasks

The structure of the Basework flow is the most complex of the four development activities. The

demand for Basework is the total number of tasks which can be completed less the tasks which

have already been completed at least once. Therefore the Basework process limit equation is:

Basework Process Limit =
 (Total Tasks Available - Completed not Checked - Checked & Released - Known Rework)

Minimum Basework Duration

The Total Tasks Available is the number of tasks which could be completed based upon the tasks

which have been completed and released. This constraint is described with the phase's Internal

Precedence Relationship and answers the question "What percent of the tasks are available for

initial completion based upon the percent which have been completed and released?" Known

Rework is not included in the Total Tasks Available because flawed tasks do not make additional

work available. The equation for the Total Tasks Available is:

Total Tasks Available = Number of Tasks in Project Scope *

Min(Internal Precedence Relationship , External Precedence
Relationship)

The Internal and External Precedence Relationships are important characterizations of the nature

of specific development process. They can be nonlinear in nature and is therefore described with

graphic functions.

The Development Task sector includes two additional flows and one additional stock for

modeling inter-phase linkages (Figure 3-15). The first of these flows to be described models the

corruption of completed work in a focal phase due to inheriting flawed tasks from upstream.

RW_due_to_Corrupted_tasks(Phase)=(Net_Corrupted_and_Found_Tasks(Phase)-
(QA_inspection_rate(Phase)*((Net_Corrupted_and_Found_Tasks(Phase)/
(QA_inspection_rate(Phase)+1e-9))*prob_Task_Flawed_and_Found(Phase))))

Rework due to Corrupted Tasks moves tasks which are completed but not checked into the

Known Rework stock based on the fraction of tasks found to be corrupted by inherited errors

(described later). Relative sizes of the phases are used to scale upstream errors found into tasks

corrupted in the focal phase.

The second flow required for multiple phases is Rework due to Errors Discovered by

Downstream Phases.

RW_due_to__Dwnstrm_QA(Phase)=Total_Err_disc_by_Dn(Phase)+
Total_Corrupted_by_Upstream_Retraction(Phase)

Errors which are discovered downstream are aggregated with released work corrupted by

upstream errors (described later), removed from the Tasks Released stock and added to the

Known Rework stock. The revised Development Task sector stock equations which include

these inter-phase flows are:

Tasks_Completed(Phase)=Tasks_Completed(Phase)+dt*(Basework(Phase)+
Rework(Phase)-Release_Tasks(Phase)-RW_due_to_InPhase_QA(Phase)-
RW_due_to_Corrupted_tasks(Phase))

Known_Rework(Phase)=Known_Rework(Phase)+dt*(RW_due_to_InPhase_QA(Phase)+
RW_due_to_Corrupted_tasks(Phase)+RW_due_to__Dwnstrm_QA(Phase)-Rework(Phase))

Tasks_Released(Phase)=Tasks_Released(Phase)+dt*(Release_Tasks(Phase)-
RW_due_to__Dwnstrm_QA(Phase))

The two inter-phase error flows control the model's fourth development activity, coordination,

and determine the effort required to address inherited errors and released and discovered errors.

Each of the two flows described above model development activities which require interaction

between development phases. They generate a need for coordination.

Current_Coord_added(Phase)=RW_due_to__Dwnstrm_QA(Phase)+
RW_due_to_Corrupted_tasks(Phase)

The accumulation of these flows represents a backlog of coordination work needing to be

completed. The performance of the coordination activity reduces the coordination backlog. The

following equation describes the accumulation of coordination work.

Coord_Backlog(Phase)=Coord_Backlog(Phase)+dt*
(Current_Coord_added(Phase)-Coordination(Phase))

The Development Tasks sector also uses a Fraction Available due to External Gates parameter to

model available-work constraints between phases (inter-phase constraints) . Tasks Available for

Basework is based on the minimum of the internal and external gates. The External Precedence

Relationships describe the available-work constraints between development phases in a manner

analogous to the internal available-work constraint described by the Internal Precedence

Relationships. An External Precedence Relationship describes the availability of work in a

downstream phase based on the amount of work which has been released by an upstream phase.

The input (abscissa) of an External Precedence Relationship is the Percent of Upstream Tasks

Released. The output is the Percent of Downstream Tasks Available for Basework.

Like a development phase's Internal Precedence Relationship, an External Precedence

Relationship between two development phases can act as a bottleneck in the availability of work.

Most previously published system dynamics models of projects have assumed that all

uncompleted tasks are available for completion (e.g. Abdel-Hamid and Madnick, 1991;

Richardson and Pugh, 1981; Roberts, 1974). This assumption implies that the nature of the

development process imposes no constraints on the number of tasks available for completion.

However the success of the Critical Path and PERT methods in staticly modeling inter-phase

dependencies in development projects and product development research (e.g. Rosenthal, 1992;

Clark and Fujimoto, 1991; Eppinger et al., 1990) show that relationships among development

phases can and often do constrain the availability of work.

The purpose of External Precedence Relationships is the same as the precedence relationships

used in the Critical Path and PERT methods: to describe the dependencies of development

phases on each other for the initial completion of work. However there are several important

differences between External Precedence Relationships and precedences used in the Critical Path

and PERT methods.

• External Precedence Relationships describe the dependency between two phases along
the entire duration of the phases instead of only at the start and finish of the phases as in
the Critical Path and PERT methods.

• External Precedence Relationships can be nonlinear.

• External Precedence Relationships describe a dynamic relationship between development
phases by allowing the output (Percent Tasks Available for Basework) to fluctuate over
the life of the project depending on the current conditions of the project, as described by
the External Precedence Relationship's input (Percent Upstream Tasks Released).

External Precedence Relationships can be used to describe rich inter-phase relationships which

cannot be described with Critical Path and PERT precedences. For example a downstream phase

which is constrained by the release of upstream tasks throughout its duration (not only at the

beginning or end of the phase) in a linear relationship can be described with a "lockstep"

External Precedence Relationship, as shown in Figure 3-13.

Figure 3-9: A "Lockstep" Constraint described with An External
 Precedence Relationship

The inter-phase relationship in Figure 3-9 is linear. One of the advantages of the model structure

used here is the ability to describe nonlinear inter-phase constraints. Varying levels of

concurrence in the development process can be described with External Precedence

Relationships by altering the shape of the curve in the graphical function. Infinite order delays

between phases can also be described by shifting the point along the abscissa at which the first

downstream tasks become available. As an example the External Precedence Relationship shown

in Figure 3-10 describes an inter-phase relationship in which the downstream phase must wait

until the upstream phase has released 20% of its tasks and then can perform Basework relatively

concurrently until near the completion of the downstream phase.

Figure 3-10: A Delayed Concurrent Constraint described with
 An External Precedence Relationship

External Precedence Relationships are used in the Product Development Project Model to

describe some of the complexity of the inner structure of a product development project and its

impacts on project performance.

External Precedence Relationships reflect the concurrence of phases which are dependent.

Concurrence(up,down)=FIFZE(1.00,TABHL(T6(*,up,down),
Fraction_Released(up),0,1,0.10),Dependency(up,down))

Fraction_Avail_due_to__Ext_gates(Phase)=MIN(FIFZE(1.00,Concurrence(1,Phase),Dependency(1,P
hase)),FIFZE(1.00,Concurrence(2,Phase),Dependency(2,Phase)),FIFZE(1.00,Concurrence(3,Phase),
Dependency(3,Phase)),FIFZE(1.00,Concurrence(4,Phase),Dependency(4,Phase)),FIFZE(1.00,Concur
rence(5,Phase),Dependency(5,Phase)))

Fraction_Released(Phase)=Tasks_Released(Phase)/Task_List(Phase)

The Concurrence variable reflects the External Precedence Relationship as discussed above,

using the Fraction Released by the upstream phase to constrain the work available in the

downstream phase. The Fraction Available due to External Gates variable includes only the

dependent upstream phases in determining the available work with a set of switches linked to the

project network. The switches and network are linked with the Dependency variable, which is 1

if the phases are dependent and 0 if they are not.

The complete Development Tasks sector is shown in Figure 3-11.

Known Rework

QA inspection rate

Our Errors Discd by Dn

Fraction Avail due to Ext gates

RW Process Limit

BW Min Task duration

QA inspection rate

RW Min Task Duration

BW Task Avail Gap

RW due to Our Errors discd by QA

RW due to Corrupted Tasks

Rework Tasks

BW Labor Limit
Tasks Compl and Rel

RW due to errors discd by Dn

Coord Min Task Duration

Coord Process LimitFraction Inspected found w our error

Coord Labor Limit

Task List

Rel Own Err density

Task List

RW Labor Limit
Tasks Completed

Basework

BW Process Limit

Fraction Inspected found w Up error

Tot Tasks Avail
~

Fraction Avail due to Int gate

Tasks Released

Release Tasks

Coordination Backlog

Coordination Added Coordination

Fraction Released to Dn

Fract Compl and Rel

Core Development Activities

Figure 3-11: The Development Tasks Sector

3.3.3.3 The Errors Sectors

Three sectors model errors: the internal, inherited, and released errors sectors. Errors generated,

discovered, and corrected within a single phase are modeled by the Internal Errors sector. A co-

flow structure (Homer, 1983 Appendix Q) is used in which the stocks and flows are directly

related to the stocks and flows in the Development Tasks sector. A comparison of Figure 3-11

and Figure 3-12 below shows their similarity. Flawed tasks are discovered through the Quality

Assurance activity. As described previously tasks found to be flawed move through the Find

Flawed Tasks flow from the Completed not Checked stock to a stock of Known Rework. These

tasks are corrected through the Rework Tasks activity and returned to the Completed not

Checked stock. The Internal Errors sector models the generation of flaws, which can be

generated during both Basework and Rework. This means that a task being reworked to correct

an existing defect may become flawed during the rework process. Because quality assurance

efforts are not perfect some flaws are missed (i.e. Type 2 errors are allowed). Therefore some

flawed tasks are mistakenly considered to be unflawed and are released with the unflawed tasks.

These errors are inherited by the phase's dependent downstream phases. The model assumes that

unflawed tasks mistakenly considered flawed are incorporated into the values of the Minimum

Activity Durations.

Our Errors Discd by Dn

Prob error gen from Effects

Graph 19

Rework Tasks

Rel Own Err density

Errors Undisc Own

Disc Own Errors

Prob of Error generation

Errors Rel Own

Errors Disc Own

Rec Rel Ret Own Errors

Rel Own Errors

RW due to Our Errors discd by QA

Tasks Released
Known Rework

~
QofP on Err Gen effect

Rework Tasks

Release Tasks

Undisc Own Error density

Ref prob error generation

~
Prob finding our error if exists

Complete BW Tasks

Gen Errors

Correct Errors

Tasks Completed

Disc Own Error Density

Fraction Inspected found w our error

Our Errors

Figure 3-12: The Internal Errors Sector

The key equations used to model the internal errors sector are described below. Several of the

tables used in the Product Development Project Model to describe nonlinear relationships

between parameters have an "S" shape. These curves have upper and lower limits to output

values, small unit changes in output near those limits and larger unit changes in output near the

center of the input range. The reasoning behind this curve follows. One limit is at or near normal

operating condition (e.g. labor provided approximates labor needed). Changes in input values

near this limit generate no or small changes because developers do not perceive enough

digression from normal conditions to trigger a significant response. Developer responses and

output values change more as input conditions move further from normal and developers notice

and react to the variance. Output unit changes decrease again as input values approach the other

limit based on the assumption of smooth continuous developer response to limits.

Generate_Errors(Phase)=(Basework(Phase)+Rework(Phase))*prob_Task_flawed(Phase)

prob_Task_flawed(Phase)=1-((1-Basic_prob_flawed_Task(Phase))*(1-
prob_of_err_gen_by_QofP(Phase)))

Errors are generated during the basework and rework development activities. The probability of

error generation is based on two factors which combine to cause errors. The inherent complexity

of the task is reflected in the basic probability that a task is flawed. The impacts of the

development work are reflected in the probability of an error being generated by the quality of

practice. Each of these probabilities are used to find the probability of no error being generated

by the task complexity or quality of practice. These "clean" probabilities are combined to find

the probability of a task being flawed by neither of these factors. The resulting probability of no

error is used to find the probability of an error by subtracting from 1.

prob_of_err_gen_by_QofP(Phase)=TABHL(T3,Quality_of_Practice
(Phase)/Ref_Qual_of_Practice(Phase),0,1,0.10)
T T3=0.55/0.45/0.36/0.28/0.21/0.15/0.10/0.06/0.03/0.01/0.00

The quality of practice influences the probability of error generation through a reverse "S"

shaped curve which does not increase errors if the quality of practice is above a reference level.

Excess quality of practice is assumed to not hurt a project. The curve rises to a maximum of 55%

when the quality of practice is zero. This assumes that there is a limit to the harmful impacts of

poor quality of practice on the generation of errors. This is based on the assumption that there is

some minimum underlying ability in the developers to perform development tasks which cannot

be totally eroded by the conditions of the project. This is a reasonable assumption when

developers are professionally trained and the process interacts using Mintzberg's (1979)

standardization of skills .

Several of the stocks and flows in the internal errors sector are directly analogous to stocks and

flows in the development tasks sector. The error parameters differ from the task parameters due

to the densities of flaws. The following equations are used to model those densities.

Compl_Task_error_density(Phase)=Our_Undiscd_Errors(Phase)/(Tasks_Completed(Phase))

Our_Discd_Error_density(Phase)=Our_Discd_Errors(Phase)/(Known_Rework(Phase)+1e-9)

Rel_Task__error_density(Phase)=Our_Errors_Released(Phase)/
(Tasks_Released(Phase)+1e-9)

Clean_Task_error_density(Phase)=(Compl_Task_error_density(Phase)*
(1-Prob_finding_our_error_if_exists(Phase)))/((1-Compl_Task_error_density(Phase))+
(Compl_Task_error_density(Phase)*(1-Prob_finding_our_error_if_exists(Phase)))+1e-9)

This last density is the number of unflawed tasks divided by the sum of the number unflawed and

flawed but missed tasks. The numerator is the product of the probability of a task being flawed

and the probability of finding a flaw if it exists. The denominator is the numerator plus the

compliment of the probability of a task being flawed.

The error coflow flow equations are formed by combining the densities and the task flows. The

error coflow stock equations are the accumulations of the flows.

Our_Undiscd_Errors(Phase)=Our_Undiscd_Errors(Phase)+dt*(Generate_Errors(Phase)-
Release_Errors(Phase)-Disc_Our_Errors(Phase)-Errors_lost_in_Corrupted_Tasks(Phase))

Disc_Our_Errors(Phase)=RW_due_to_InPhase_QA(Phase)

Errors_lost_in_Corrupted_Tasks(Phase)=Compl_Task_error_density(Phase)*
RW_due_to_Corrupted_tasks(Phase)

Release_Errors(Phase)=(Release_Tasks(Phase)*Clean_Task_error_density(Phase))
Our_Errors_Released(Phase)=Our_Errors_Released(Phase)+dt*
(Release_Errors(Phase)-Receive_Our_Errors_fr_Dn(Phase))

Receive_Our_Errors_fr_Dn(Phase)=Total_Err_disc_by_Dn(Phase)+
Total_Corrupted_by_Upstream_Retraction(Phase)

Our_Discd_Errors(Phase)=Our_Discd_Errors(Phase)+dt*(Receive_Our_Errors_fr_Dn(
Phase)+Disc_Our_Errors(Phase)-Correct_Our_Errors(Phase))

Correct_Our_Errors(Phase)=Rework(Phase)*Our_Discd_Error_density(Phase)

Total_Err_disc_by_Dn(Phase)=Up_Flawed_Tasks_found(Phase,1)+
Up_Flawed_Tasks_found(Phase,2)+Up_Flawed_Tasks_found(Phase,3)+
Up_Flawed_Tasks_found(Phase,4)+Up_Flawed_Tasks_found(Phase,5)

The total number of errors returned to a phase is the sum of the errors released by that phase and

discovered by all the downstream phases.

Prob_finding_our_error_if_exists(Phase)=TABHL(T2,QA_Status(Phase),0,20,2.0))
T T2=0.00/0.335/0.535/0.685/0.81/0.88/0.925/0.96/0.985/1.00/1.00

The probability of finding an existing error is based on the adequacy of the quality of practice.

No errors can be found if the quality of practice is zero. This assumes that the project conditions

can degrade the quality of the work done by the developers to such a degree that they miss all the

errors in the work they inspect. This is a reasonable lower bound. The probability of finding

errors based on the adequacy of the actual quality of practice increases as the actual quality of

practice rises above a reference value. An upper bound of finding all errors (assuming other

factors do not prevent discovery) is approached as the quality of practice reaches 18 times the

reference value.

prob_Task_flawed_and_Found(Phase)=Prob_finding_our_error_if_exists(Phase)*
Compl_Task_error_density(Phase)

The probability that a task is both flawed and discovered to be flawed is the product of the

probabilities that it is flawed and the probabilities that the flaw is found.

Errors received by a phase from an upstream phase are modeled with the Upstream Errors sector.

Figure 3-13 shows an example of this structure for a focal phase with two upstream phases. The

Product Development Project Model can model the inheritance of errors from a flexible number

of phases. These errors corrupt tasks done in the focal phase. Each phase discovers a portion of

its tasks which have been corrupted by the errors it inherits based on the quantity and

effectiveness of its quality assurance efforts. Multiple corruptions of the same task are eliminated

and the net corrupted tasks are used in the Development Tasks and Internal Errors sectors.

Tasks Corrupted by Up2 errors

Up1 Rel Task Error density

Up2 Rel Task Error density

Our prob find Up error if exists

Up1 Errored Tasks found

Up2 Errored Tasks found

QA Process Limit

Net Corrupted Tasks

Our Tasks Corrupted by Up1

Our to Up1 size

prob Task has Up1 error

Corrupted task discoveries

Duplicate Corruption discoveries

QA Process Limit

percent Duplicate Corruption discoveries

prob Task Corrupted by Up1

prob Task Corrupted by Up2

prob Task has Up2 Error

Our to Up2 size

Upstream Errors

Figure 3-13: The Upstream Errors Sector

The key equations used to model the upstream errors sector are described below.

prob_Task_Corrupted_and_found(up,Phase)=prob_find_Up_error__if_exists(Phase)*
Rel_Task__error_density(up)*Dependency(up,Phase)

The probability that an inherited task is both flawed and discovered to be flawed is the product of

the probabilities that it is flawed and the probabilities that the flaw is found.

Tasks_Corrupted_and_Found(up,Phase)=QA_inspection_rate(Phase)*
prob_Task_Corrupted_and_found(up,Phase)

The number of tasks found to be corrupted is the probability that finding corrupted tasks times

the rate at which tasks are being inspected in the downstream phase.

Corrupted_task_discoveries(Phase)=Tasks_Corrupted_and_Found(1,Phase)+
Tasks_Corrupted_and_Found(2,Phase)+Tasks_Corrupted_and_Found(3,Phase)+
Tasks_Corrupted_and_Found(4,Phase)+Tasks_Corrupted_and_Found(5,Phase)

The total number of tasks discovered to be corrupted is the sum of the corrupted tasks found

from all upstream dependent phases. Phases not linked to the focal phase have been assigned

zero tasks corrupted. This value can include multiple discoveries of the same flawed task.

percent_Multiple_Corruption_discoveries(Phase)=
(prob_Task_Corrupted_and_found(1,Phase)*prob_Task_Corrupted_and_found(2,Phase))+
(prob_Task_Corrupted_and_found(1,Phase)*prob_Task_Corrupted_and_found(3,Phase))+
(prob_Task_Corrupted_and_found(1,Phase)*prob_Task_Corrupted_and_found(4,Phase))+
(prob_Task_Corrupted_and_found(1,Phase)*prob_Task_Corrupted_and_found(5,Phase))+
(prob_Task_Corrupted_and_found(2,Phase)*prob_Task_Corrupted_and_found(3,Phase))+
(prob_Task_Corrupted_and_found(2,Phase)*prob_Task_Corrupted_and_found(4,Phase))+
(prob_Task_Corrupted_and_found(2,Phase)*prob_Task_Corrupted_and_found(5,Phase))+
(prob_Task_Corrupted_and_found(3,Phase)*prob_Task_Corrupted_and_found(4,Phase))+
(prob_Task_Corrupted_and_found(3,Phase)*prob_Task_Corrupted_and_found(5,Phase))+
(prob_Task_Corrupted_and_found(4,Phase)*prob_Task_Corrupted_and_found(5,Phase))

The total probability of a flaw discovery being repeated is the sum of the probabilities of a

multiple discovery by each of the possible phase interactions. The probability of a repeated

discovery is the product of each of the individual discovery probabilities.

Multiple_Corruption_discoveries(Phase)=QA_inspection_rate(Phase)*
percent_Multiple_Corruption_discoveries(Phase)

Multiple discoveries occur at the rate of inspection times the percent of tasks found more than

once to be flawed.

Net_Corrupted_and_Found_Tasks(Phase)=Corrupted_task_discoveries(Phase)-
Multiple_Corruption_discoveries(Phase)

The net number of tasks found to be corrupted is the actual number of corrupted and flawed tasks

corrected for multiple error discoveries. This is the total number of discoveries less the number

of multiple discoveries.

Up_Flawed_Tasks_found(up,Phase)=Tasks_Corrupted_and_Found(up,Phase)*
TaskListScale(up,Phase)

Total_Err_disc_by_Dn(Phase)=Up_Flawed_Tasks_found(Phase,1)+
Up_Flawed_Tasks_found(Phase,2)+Up_Flawed_Tasks_found(Phase,3)+
Up_Flawed_Tasks_found(Phase,4)+Up_Flawed_Tasks_found(Phase,5)

The flawed tasks returned to the upstream phase are those discovered by the downstream phases

increased or decreased by the relative sizes of the upstream phase and each of the dependent

downstream phases. The total returned flawed tasks is the sum of those returned from all

downstream phases.

prob_find_Up_error__if_exists(Phase)=MIN(1,Coord_effect_on_Find_Up_Errors(Phase)*
QofP_Error_Disc_effect(Phase))

Coord_effect_on_Find_Up_Errors(Phase)=TABHL(T1,Coord_Status(Phase),0,1,0.10)
T T1=0.00/0.015/0.045/0.115/0.265/0.54/0.715/0.84/0.92/0.975/1.00

QofP_Error_Disc_effect(Phase)=TABHL(T4,Quality_of_Practice(Phase)/
Ref_Qual_of_Practice(Phase),0,1,0.10)
T T4=0.20/0.20/0.22/0.25/0.3/.4/.65/.7/.85/.95/1.0

The probability of finding an upstream error if it exists is impacted by the adequacy of

coordination and the level of the quality of practice. Both relationships have an "S" shape. The

lower limit of the coordination relationship is zero, indicating that if there is no coordination

there is no chance of finding upstream errors. The quality of practice relationship has a lower

limit of 0.20, indicating that some errors could be found if two teams were coordinating but one

had a low quality of practice. Both upper limits are 1.0 since finding more than 100% of the

existing errors is unreasonable.

Two types of project errors cause tasks to flow from the Tasks Released stock to the Known

Rework stock. The first is errors which are released to downstream phases, discovered there, and

returned for correction. The second type of project error is upstream errors which have been

discovered and require the rework of completed and released tasks in downstream dependent

phases. This represents the notification of other phases of an error by developers. This second

type of errors reflects the following conditions: the middle phase in a sequential set of three

phases completes its tasks before the final phase discovers errors created and released by the first

phase and not discovered by the middle phase. The final phase returns those errors to the first

phase for correction, generating rework for the first and final phases. Since the middle phase is

completed these newly discovered errors will not be reflected in the corruption of tasks in the

middle phase. In real projects these errors by the first phase will require the rework of released

tasks in the middle phase as well. This relationship models the notification of downstream phases

when an upstream phase is notified that it has made an error. The model uses the following

equation to model this flow.

RW_due_to__Dwnstrm_QA(Phase)=Total_Err_disc_by_Dn(Phase)+
Total_Corrupted_by_Upstream_Retraction(Phase)

The flow is the sum of the flaws due to released errors discovered downstream and the flaws

caused by the retraction of finished work upstream due to error discoveries. The two contributors

to the sum are the totals of the errors for each of the upstream or downstream phases linked to

the focal phase.

3.3.4 The Resources Subsystem

The structural components of the Resources subsystem are based on previously constructed and

tested system dynamics models which are documented in the literature. Table 3-1 at the end of

the model structure description lists the primary model references for each model sector. The

Resources subsystem consists of the Gross Labor, Labor Allocation, Workweek, Experience,

Quality of Practice, Development Limit and Expected Productivity sectors.

3.3.4.1 The Labor Sectors

The Gross Labor sector (Figure 3-14) models the quantity of labor used in a development phase.

Headcount is assumed to be the number of full time, rested, experienced product developers.

Therefore a rested experienced developer which spent half of his or her time developing the

product would be considered 0.50 person. Headcount is changed within the range set by the

minimum and maximum headcount to bring the actual headcount to

