

Chapter 3

Model Description

3.1 Introduction

Painting a complete picture of the Product Development Project Model requires descriptions
from several perspectives. In this chapter I begin this process by depicting the model from three
relatively context-free vantage points. First the model itself is framed by defining its boundaries
and level of aggregation. In the second and largest portion of this chapter the model's inner
structure is depicted in increasing detail by describing phases, subsystems, and sectors. A table
of the foundations of the important model structures completes the model structure section. An
initial description and investigation of model behavior is the third vantage point. The sensitivity
tests identify the parameters which deserve special attention as the model is applied to specific

contexts.

Other perspectives are applied to expand the description and investigation of the model in
subsequent chapters. A signal processing model of a portion of the Product Development Project
Model is described and used to illustrate an alternative modeling approach in chapter 4. The
Python Development Project forms a specific context for the application of the model and its use

for policy analysis in chapter 5.

3.2 Model Boundary and Level of Aggregation

The model's scope and focus are reflected in the model boundary. Figure 3-1 delineates the
primary features included (endogenous), assumed (exogenous), and excluded (ignored) from the
Product Development Project Model. Among the most important model boundaries are the edges
of a single development project. This focuses the research on the inner workings of development
projects. While the interaction of projects in a multiple-project development environment can be
important (Wheelwright and Clark, 1992; Wheelwright and Sasser, 1991) an improved
understanding of the structure and behavior of single development projects is needed as a basis
for investigating multiple projects. Such as single project model can be replicated to build a

multiple-project model to investigate project interactions.

A second important boundary assumption is a stable development environment, process, and
organization throughout the project life. An example of an assumption about a stable
development process is the use of exogenous constants to describe the average duration required
to complete development activities. These values and function do not change during the
simulation. The potential impacts of relaxing the boundary assumptions are discussed in the

conclusions.

Development

Ignor opment
gno ed Post-development Organization's
operations Environment
(A
Development Exogenous Development
Technology Organization
Evolution priorities Development
Development Phases &
Technology Sequence
Development
Organization) (\
Evolution |Available | Endogenous Resource
e Resource Quantity
constraints Project Effectiveness
Competing Targets
projects Inter-phase
Inter-phasq impacts Profect
process Coordination P erforjm ance
constraints)
Quality
b Assurance Error
Intra-phase | Quality of ;
process Practice Gg}eratlon &
constraints iscovery
Iteration Iflelzsourpe Project
& Rework ocation Scope
\ /)

Figure 3-1: Product Development Project Model Boundary Diagram

Within the model boundary the level of aggregation focuses the research and model purpose. For

example the model simulates multiple interdependent development phases within a project.

Phases are defined around similar development activities such as product definition, design,
testing, and installation. Examples of a single development phase include the preparation of
construction drawings in a real estate development project, the writing of software code and the

testing of product prototypes.

Another important level of aggregation assumption concerns the fundamental units which flow
through projects. I assume that these units are "development tasks". Conceptually a development
task is an atomic unit of development work. Examples of development tasks might include the
selection of a pump, writing a line of computer code and installing a steel beam. The unit of
work used to describe a development task may differ among project phases. For example a
product definition phase might use product specifications as the basis for tasks whereas the
design phase of the same project might use lines of computer code. Tasks are assumed to be
uniform in size and fungible. This assumption becomes more accurate as task size decreases.
Therefore relatively small pieces of development work are selected as tasks. Fungibility is an
inherent characteristic of some development tasks (e.g. the delivery and placement of soils for a
roadbed). Many other development phases have interdependent but fungible tasks (e.g. software
code as in Abdel-Hamid, 1984). The Product Development Project Model provides for the
description of task dependencies both within and among phases, as described subsequently in the
Development Tasks sector. Tasks are also assumed to be small enough to be flawed or correct
but not partially flawed. This assumption also becomes more accurate as task size becomes
smaller. These assumptions concerning tasks help identify divisions among development phases

and development tasks.

I have disaggregated development within each phase into four activities: basework, quality
assurance, rework and coordination. Basework is the completion of a development task the first
time. Subsequent completions which are required to correct flaws or iterate for quality are
referred to as Rework. Rework includes all forms of iteration regardless of cause. The search for
flaws is Quality Assurance (QA) or Inspection. Flaws include errors which must be corrected for
product functionality and optional improvements for quality. Coordination is the integration of
the product development project among phases due to releasing and inheriting flawed tasks from

other phases.

Resources for each phase have been aggregated into a single labor type. This reflects an

assumption that other development resources such as testing machines and administrative

support are used in proportion to development labor. The primary model assumptions concerning
the level of aggregation are listed below.
* Development projects consist of a network of dependent phases under a project
management structure.

* The progress of a development phase can be reflected in the flow of development tasks
through and among development phases.

* Development tasks are small, uniform in size and either flawed or correct but not
partially flawed.

* Development occurs through four activities: basework, quality assurance, rework, and
coordination.

* The repair of flawed tasks for basic product functionality and optional iteration for quality
have similar characteristics and can be modeled together as Rework.

 Different resource types can be aggregated into a single labor group for each
development phase.

The Product development Project Model's boundary and level of aggregation focus the research.
The internal structure of the model which simulates a development project is described in the

next section.

3.3 Model Structure

3.3.1 Introduction

Operationally the model is a set of nonlinear ordinary differential equations. Appendix 3.1:
Model Equations provides a complete listing of those equations. The equations are arrayed to
allow the simulation of a flexible number of development phases and include many equations to
manage the modeling of multiple phases. This results in a high number of model parameters and
relationships in a network which is too complex to illustrate with multiple phase diagrams.
However diagrams of a single phase will be used for model description purposes with
explanations of deviations for multiple phases. Definitions of the model parameters used in the

model equations are given in Appendix 3.2: Model Parameters.

The model consists of a set of interrelated development phases and a set of project management

features. Each phase is customized to reflect a specific stage of product development. A phase

dependency network describes the forward flow of work through the project. Figure 3-2 shows a

simple phase dependency network for a real estate development project.

Construction

/ Planning
A
\ Purchasing

Figure 3-2: A Phase Dependency Network for a Development Project

Construction
and
Installation

Concept - Detailed
Design Design

Project phases are linked in several ways:

* Work flows in upstream phases constrain progress in dependent downstream phases. The
locations of these constraints are shown by the arrows in the project's phase dependency
network (Figure 3-1).

* Errors inherited by downstream phases from upstream phases corrupt downstream work.

* Inherited errors that are discovered in downstream phases are returned for correction to
the phase where the error was generated.

* Coordination with other phases is required by discovering inherited errors or having
errors generated within a phase discovered by downstream phases.

* Completion and expected completion dates of phases influence the project deadline. The
project deadline in turn influences phase deadlines.

* Poor schedule, quality, and cost performance in any phase increases the impacts of non
conformance to the project targets. Those project level impacts influence individual phase
targets.

The basis for the model structure is described below and summarized in Table 3-2, located after

the model subsystem descriptions.

3.3.2 Model Subsystems

The model is relatively large with approximately twenty five stocks for each development phase
and five project management stocks. For descriptive purposes the model has been disaggregated
into five subsystems (Figure 3-3): process structure, scope, resources, targets, and performance.
Subsystems have been further disaggregated into sectors. Subsystems and sectors are tightly
linked through shared parameters. For clarity these parameters are shown in each sector diagram

where the parameter is used.

Process Structure Resources

Quantity

Development Activites .
velop v Allocation among

Development Activites

Phase Dependencies .
Effectiveness

Performance

____________ -

{ Cycle Time }

1 1

: Defect Rate :

1 1

(S Cost__s

Project Scope Deadline
Quality Goal
Rework
Budget

Scope Targets

Figure 3-3: Model Subsystems

3.3.3 The Process Structure and Scope Subsystems

3.3.3.1 Introduction

Impacts of the development process and the amount of project work on performance are modeled
with the Process Structure and Scope subsystems. The Development Tasks subsystem describes
the nature of the development process, while the Scope subsystem simulates the original project
scope and increases due to rework. These subsystems include the Development Tasks, Internal

Errors, Upstream Errors and Downstream Errors sectors.

3.3.3.2 The Development Task Sector

The process structure portion of the model is one of the most important contributions of this
research to model structure. The Development Task sector is the core of how the Product
Development Project Model describes development processes. A diagram of the complete
Development Tasks Sector in shown in Figure 3-15. One of the most important interactions of
development process and resources occurs at the four development activities in the Development
Tasks sector. Each activity proceeds at the minimum pace allowed by its process and resources,

as modeled with the following equations:

QA inspection_rate(Phase)=MIN(QA_Process Limit(Phase),QA Labor Limit(Phase))
Rework(Phase)=MIN(RW_Process Limit(Phase),RW_Labor Limit(Phase))
Basework(Phase)=MIN(BW_Process Limit(Phase),BW_ Labor Limit(Phase))

Coordination(Phase)=MIN(Coord Process Limit(Phase),Coord Labor Limit(Phase))

Figure 3-4 illustrates the two feedback loops which are the basis for the process structure. The
balancing loop depicts the reduction in the number of tasks available for Basework as work is
completed. In this loop the Basework rate is based on the Tasks Available for Basework and the
Minimum Basework Duration. An increase in the Basework rate increases the number of Tasks
Completed, which decreases the number of Tasks Available for Basework, which reduces the
Basework rate. This loop introduces the first of two types of parameters used to describe the
development process in a phase, the Minimum Activity Duration. The Minimum Activity
Duration is the average time required to complete a task if all required information, materials and
resources are available and no flaws are generated. It describes the purest time constraint which
the process imposes on progress by answering the question "How fast on average can a task be
completed if everything needed is available?" All four development activities (basework, quality
assurance, rework and coordination) apply this concept. This allows more detailed and accurate
descriptions of a development process than by modeling a single development activity. In Figure
3-4 the Minimum Activity Duration is applied to basework. Feedback loops similar to the
balancing loop shown in Figure 3-4 are used to describe the role of the Minimum Quality
Assurance Duration in discovering flawed tasks, the Minimum Rework Duration in correcting
flawed tasks, and the Minimum Coordination Duration in integrating development project

phases.

Internal
Precedence
Relations
constraint

=+, Tasks
Complete

+

Basework Tasks Compl
rate @ & Tasks Wai

- to be Comple
+\

@ ¥
Minimum

Tasks Availalste a1
for Basework

Basework

Duration

Number of Tagks
in Project Scope

Figure 3-4: A Development Process Feedback Structure

The reinforcing loop shown in Figure 3-4 models the increase in the number of tasks which are
available to the basework activity due to the completion of work. In this loop an increased
basework rate raises the number of Tasks Completed, which raises the total number of tasks
which can be completed. The total number of tasks which can be completed includes both tasks
which have been completed and tasks which are available and waiting to be completed. This
quantity of tasks is also dependent on the nature of the development process as described by the
process's Internal Precedence Relationship. Increasing the number of Tasks Completed &
Waiting to be Completed raises the Tasks Available for Basework and thereby further raises the
Basework rate. The reinforcing loop introduces the second type of descriptor of specific
development processes, the Internal Precedence Relationship. Internal Precedence Relationships

describe the availability of work based solely on the amount of work which has been completed.

Erecting structural steel for a ten story building one story at a time from the ground up provides
an example of an Internal Precedence Relationship. Initially 0% is Completed and only the first
floor (10%) is Completed or Available to be Completed. When the first floor of steel is erected
10% is Completed and the second floor (another 10%) becomes available, making 20%

Completed or Waiting to be Completed. This linear progression continues until the completion of

the ninth floor (90% Completed) releases the final floor for completion (100% Completed or
Waiting to be Completed). A graphic function which describes this Internal Precedence
Relationship is shown in Figure 3-5. The Internal Precedence Relationship describes the
available-work constraint which a development process imposes on itself by answering the

question "How much work can be completed based upon how much work has been completed?"

| 1.000 | Input Output
; 0.000 0.100
P e 0.100 0.200
e 0.200 0.300
= 0.300 0.400
& 0.400 0.500
=z | 0.500 0.600
- 0.600 0.700
g 0.700 0.800
5 F.. 0.800 0.900
= 0.900 1.000
= b e i 1.000 1.000
|']-f"]‘J N EREEERE
] L Data Points: D
|| : 0.000 1.000
- Percent_Completed_or_Released E@it Dutput: 1.]0!]0
(To Equation | [Delete Graph][Cancel |[0K]

Figure 3-5: A Linear Internal Precedence Relationship

An advantage of the system dynamics methodology and the model structure used here is the
ability to describe nonlinear Internal Precedence Relationships (Graham 1980). This allows
varying degrees of concurrent development within a single phase can be described with Internal
Precedence Relationships by altering the shape of the curve in the graphical function. The
Internal Precedence Relationship example shown in Figure 3-6 is based upon the design of code
for the development of a computer chip. Documentation for the shape of the curve is provided in
a later chapter. Initially a few very important blocks of code must be designed. This is the reason
for the flat portion of the curve on the left side of the function. Their completion makes the
design of many more blocks possible. This is the reasoning behind increasing rate of availability
in the left portion of the curve. The increase in available work slows as the design nears

completion and the blocks of code must be integrated. This produces the flat "tail" of the curve.

Input Output
0.000 D.200
0.100 0.200
0.200 0.220
0.300 0.390
0.400 0.690
0.500 0.850
0.600 0.930
0.700 0.970
0.800 0.990
0.900 1.000
1.000 1.000
&l B2 Data Points:D
|| :\ 0.000 1.000

Percent_Completed_or_Released C0't Sutput: :

[To Equation][Delete Graph | [Cancel |[0K |

Figure 3-6: A Nonlinear Internal Precedence Relationship

A development process's Internal Precedence Relationship describes the available work
constraints which the tasks aggregated into a single phase impose on each other. It estimates the
impacts of the dependency network which exists among the phase's tasks. For example if the
erection of structural steel for a high-rise building was the phase the Internal Precedence
Relationship would reflect that columns must be installed before the beams which they support.
These constraints can act as a bottleneck in the availability of work. Most previously published
system dynamics models of projects have assumed that all uncompleted tasks are available for
completion (e.g. Abdel-Hamid, 1984; Richardson and Pugh, 1981; Roberts, 1974). This
assumption implies that all tasks are independent and could be performed in parallel and that the
nature of the development process imposes no constraints on the number of tasks available for
completion. However product development research (e.g. Rosenthal, 1992; Clark and Fujimoto,
1991) and the steel erection example above show that processes can and frequently do internally

constrain the availability of work.

The stock and flow structure of the development process within a single phase follows from the
feedback structure shown in Figure 3-4. Development tasks flow into and through three stocks:

the Completed not Checked, Known Rework, and Checked & Released stocks (Figure 3-7).

Known Rework
Find Flawed Tasks

O

ZN

Rework Tasks Release Tasks

@ D >
Completed‘ %ot Checked O Checked & Released

Work to be Done O

Basework

Figure 3-7: Process Structure Stocks and Flows (Single Phase)

Tasks are completed for the first time through the performance of basework. They accumulate in
the Completed not Checked stock. If no tasks are flawed or those flaws are not found tasks leave
the Completed not Checked stock and pass through the Release Tasks flow into the Checked &
Released stock. This represents delivering tasks to the managers of downstream phases or to
customers. Flawed tasks are modeled in the Errors sectors. Tasks which are found to be flawed
flow to the Known Rework stock. The Rework flow returns corrected tasks to the Completed,
not Checked stock for inspection. The following stock equations describe these accumulations

explicitly.

Tasks Completed(Phase)=Tasks Completed(Phase)+dt*(Basework(Phase)+
Rework(Phase)-Release Tasks(Phase)-RW _due to InPhase QA(Phase))

Known_Rework(Phase)=Known Rework(Phase)+dt*
(RW_due to InPhase QA(Phase)-Rework(Phase))

Tasks Released(Phase)=Tasks Released(Phase)+dt*(Release Tasks(Phase)

Figure 3-8 shows the process structure for a single phase with auxiliary parameters.

probability Flaw found if exists
probability Task has Flaw

Known Rework

Find Flawed Tasks
N
N

Min QA Duration

Quality Assurance rate

Rework Tasks

Release Tasks

Completecﬁﬁot ecked \@ Checked & Released

Min Rework Duration

@

Tasks Completed & Released

Basework
Percent Completed & Released

Tasks Available for Basework

Number of Tasks
Min Basework Duration

Total Tasks Available

Known Rework Internal Precedence Relationship

Figure 3-8: Process Structure (Single Phase)

The form taken by the limits on progress imposed by the development process structure for each
of the four development activities are similar. A phase's demand for each activity (Basework,
Quality Assurance, Rework and Coordination) is the number of tasks available for the activity.

The general process limit equation is:

Tasks Available for the Activity
Minimum Activity Duration

Development Activity Process Limit =

Minimum Activity Durations describe the relative difficulty of the four development activities.
The structures which describe the development activities will be described in increasing

complexity from Rework to Coordination to Quality Assurance to Basework.

The Rework flow structure is the simplest. The value of the Tasks Available for the Activity
parameter in the equation above for the Rework flow is the number of tasks in the Known
Rework stock. The formulation assumes that all tasks in the rework stock are independent. The

Rework process limit equation is:

Known Rework
Minimum Rework Duration

Rework Process Limit =

Demand for the Coordination activity is the Coordination Backlog. Since coordination is the
interaction of developers across phases it is required only for multiple phases. This stock is the
accumulation of the sum of the tasks which have been corrupted due to inheriting flawed tasks
from upstream and the flawed tasks which have been released and returned by downstream
development phases less the tasks which have been coordinated. Figure 3-15 shows this
structure. The Coordination process limit equation is:

Coordination Backlog
Minimum Coordination Duration

Coordination Process Limit =

The value of the Tasks Available for the Activity parameter for the Quality Assurance rate is the
number of tasks which have been completed but not yet checked. This is the Completed not

Checked stock. Therefore the Quality Assurance process limit equation is:

Completed not Checked
Minimum QA Duration

Quality Assurance Process Limit =

Quality Assurance is the basis for two flows. The first flow is the Find Flawed Tasks flow which
depends on the Quality Assurance rate and the effectiveness of those efforts at finding flawed
tasks. Quality assurance effectiveness is measured with the probability of finding a flawed task.
This is the product of the probability of finding a flaw if it exists and the probability of a task
being flawed. Therefore the Find Flawed Tasks equation is:

Completed not Checked
Minimum QA Duration

Find Flawed Tasks = * p(Flaw found if exists) * p(Task is Flawed)

The probability of a flawed task being found if it exists is based upon the adequacy of the quality
assurance effort, as measured by the ratio of the quality assurance labor applied to the quality
assurance labor required. This is described in the resources sector of the model. The probability
that a task is flawed is the ratio of the number of unchecked flawed tasks (in the Internal Errors

sector) to the total number of unchecked tasks.

The second flow driven by Quality Assurance is the Release Tasks flow. All tasks which are

checked leave the Completed not Checked stock. Those that are found to be flawed are sent to

the Known Rework stock as described above. Tasks which are found to be unflawed (those
without flaws and those with flaws that were missed) are released. Therefore the equation for the
process limit on the Release Tasks flow is the total number of tasks checked less those found to

have flaws:

Release Tasks = Quality Assurance rate - Find Flawed Tasks

The structure of the Basework flow is the most complex of the four development activities. The
demand for Basework is the total number of tasks which can be completed less the tasks which

have already been completed at least once. Therefore the Basework process limit equation is:

Basework Process Limit =

(Total Tasks Available - Completed not Checked - Checked & Released - Known Rework)
Minimum Basework Duration

The Total Tasks Available is the number of tasks which could be completed based upon the tasks
which have been completed and released. This constraint is described with the phase's Internal
Precedence Relationship and answers the question "What percent of the tasks are available for
initial completion based upon the percent which have been completed and released?" Known
Rework is not included in the Total Tasks Available because flawed tasks do not make additional

work available. The equation for the Total Tasks Available is:

Total Tasks Available = Number of Tasks in Project Scope *
Min(Internal Precedence Relationship , External Precedence

Relationship)

The Internal and External Precedence Relationships are important characterizations of the nature
of specific development process. They can be nonlinear in nature and is therefore described with

graphic functions.

The Development Task sector includes two additional flows and one additional stock for
modeling inter-phase linkages (Figure 3-15). The first of these flows to be described models the

corruption of completed work in a focal phase due to inheriting flawed tasks from upstream.

RW due to Corrupted tasks(Phase)=(Net Corrupted and Found Tasks(Phase)-
(QA_inspection_rate(Phase)*((Net Corrupted and Found Tasks(Phase)/
(QA _inspection_rate(Phase)+1e-9))*prob Task Flawed and Found(Phase))))

Rework due to Corrupted Tasks moves tasks which are completed but not checked into the
Known Rework stock based on the fraction of tasks found to be corrupted by inherited errors
(described later). Relative sizes of the phases are used to scale upstream errors found into tasks

corrupted in the focal phase.

The second flow required for multiple phases is Rework due to Errors Discovered by

Downstream Phases.

RW _due to Dwnstrm_QA(Phase)=Total Err disc_by Dn(Phase)+
Total Corrupted by Upstream Retraction(Phase)

Errors which are discovered downstream are aggregated with released work corrupted by
upstream errors (described later), removed from the Tasks Released stock and added to the
Known Rework stock. The revised Development Task sector stock equations which include

these inter-phase flows are:

Tasks Completed(Phase)=Tasks Completed(Phase)+dt*(Basework(Phase)+
Rework(Phase)-Release Tasks(Phase)-RW due to InPhase QA(Phase)-
RW _due to Corrupted tasks(Phase))

Known Rework(Phase)=Known Rework(Phase)+dt*(RW _ due to InPhase QA(Phase)+
RW due to Corrupted tasks(Phase)*RW due to Dwnstrm QA(Phase)-Rework(Phase))

Tasks Released(Phase)=Tasks Released(Phase)+dt*(Release Tasks(Phase)-
RW _due to Dwnstrm_QA(Phase))

The two inter-phase error flows control the model's fourth development activity, coordination,
and determine the effort required to address inherited errors and released and discovered errors.
Each of the two flows described above model development activities which require interaction

between development phases. They generate a need for coordination.

Current_Coord_added(Phase)=RW_due to Dwnstrm QA(Phase)+
RW due to Corrupted tasks(Phase)

The accumulation of these flows represents a backlog of coordination work needing to be
completed. The performance of the coordination activity reduces the coordination backlog. The

following equation describes the accumulation of coordination work.

Coord Backlog(Phase)=Coord Backlog(Phase)+dt*
(Current_Coord added(Phase)-Coordination(Phase))

The Development Tasks sector also uses a Fraction Available due to External Gates parameter to
model available-work constraints between phases (inter-phase constraints) . Tasks Available for
Basework is based on the minimum of the internal and external gates. The External Precedence
Relationships describe the available-work constraints between development phases in a manner
analogous to the internal available-work constraint described by the Internal Precedence
Relationships. An External Precedence Relationship describes the availability of work in a
downstream phase based on the amount of work which has been released by an upstream phase.
The input (abscissa) of an External Precedence Relationship is the Percent of Upstream Tasks

Released. The output is the Percent of Downstream Tasks Available for Basework.

Like a development phase's Internal Precedence Relationship, an External Precedence
Relationship between two development phases can act as a bottleneck in the availability of work.
Most previously published system dynamics models of projects have assumed that all
uncompleted tasks are available for completion (e.g. Abdel-Hamid and Madnick, 1991;
Richardson and Pugh, 1981; Roberts, 1974). This assumption implies that the nature of the
development process imposes no constraints on the number of tasks available for completion.
However the success of the Critical Path and PERT methods in staticly modeling inter-phase
dependencies in development projects and product development research (e.g. Rosenthal, 1992;
Clark and Fujimoto, 1991; Eppinger et al., 1990) show that relationships among development

phases can and often do constrain the availability of work.

The purpose of External Precedence Relationships is the same as the precedence relationships
used in the Critical Path and PERT methods: to describe the dependencies of development
phases on each other for the initial completion of work. However there are several important
differences between External Precedence Relationships and precedences used in the Critical Path
and PERT methods.

* External Precedence Relationships describe the dependency between two phases along
the entire duration of the phases instead of only at the start and finish of the phases as in
the Critical Path and PERT methods.

* External Precedence Relationships can be nonlinear.

* External Precedence Relationships describe a dynamic relationship between development
phases by allowing the output (Percent Tasks Available for Basework) to fluctuate over
the life of the project depending on the current conditions of the project, as described by
the External Precedence Relationship's input (Percent Upstream Tasks Released).

External Precedence Relationships can be used to describe rich inter-phase relationships which
cannot be described with Critical Path and PERT precedences. For example a downstream phase
which is constrained by the release of upstream tasks throughout its duration (not only at the
beginning or end of the phase) in a linear relationship can be described with a "lockstep"

External Precedence Relationship, as shown in Figure 3-13.

| 1.000 Input Output
0.000 0.000
0.100 0.100
2 0.200 0.200
= 0.300 0.300
x 0.400 0.400
e 0.500 0.500
= 0.600 0.600
. 0.700 0.700
= 0.800 0.800
=~ 0.900 0.900
A S £ ; 1.000 k| 1.000
|0-000 2B R RS e
G I Data Puints:l:l
IV\ 0.000 1.000

Percent_of_Up_Completed Edidniput I:'

[ToEquation][Delete Graph][cCancel |[0K |

Figure 3-9: A "Lockstep' Constraint described with An External

Precedence Relationship

The inter-phase relationship in Figure 3-9 is linear. One of the advantages of the model structure
used here is the ability to describe nonlinear inter-phase constraints. Varying levels of
concurrence in the development process can be described with External Precedence
Relationships by altering the shape of the curve in the graphical function. Infinite order delays
between phases can also be described by shifting the point along the abscissa at which the first
downstream tasks become available. As an example the External Precedence Relationship shown
in Figure 3-10 describes an inter-phase relationship in which the downstream phase must wait
until the upstream phase has released 20% of its tasks and then can perform Basework relatively

concurrently until near the completion of the downstream phase.

Input Output
0.000 0.000
0.100 0.000
0.200 0.000
0.300 0.035
0.400 0.090
0.500 0.185
0.600 0.405
0.700 0.720
0.800 0.900
0.9500 0.970
1.000 1.000
pata Points: [11 |

| [0.000 1.000
Percent_of_Up_Completed Editdutput: |:|

[To Equation | [Delete Graph | [cCancel |[0K |

Figure 3-10: A Delayed Concurrent Constraint described with
An External Precedence Relationship

External Precedence Relationships are used in the Product Development Project Model to
describe some of the complexity of the inner structure of a product development project and its

impacts on project performance.

External Precedence Relationships reflect the concurrence of phases which are dependent.

Concurrence(up,down)=FIFZE(1.00,TABHL(T6(*,up,down),
Fraction Released(up),0,1,0.10),Dependency(up,down))

Fraction_Avail due to Ext gates(Phase)=MIN(FIFZE(1.00,Concurrence(1,Phase),Dependency(1,P
hase)),FIFZE(1.00,Concurrence(2,Phase),Dependency(2,Phase)),FIFZE(1.00,Concurrence(3,Phase),
Dependency(3,Phase)),FIFZE(1.00,Concurrence(4,Phase), Dependency(4,Phase)),FIFZE(1.00,Concur
rence(5,Phase),Dependency(5,Phase)))

Fraction Released(Phase)=Tasks Released(Phase)/Task List(Phase)

The Concurrence variable reflects the External Precedence Relationship as discussed above,
using the Fraction Released by the upstream phase to constrain the work available in the
downstream phase. The Fraction Available due to External Gates variable includes only the
dependent upstream phases in determining the available work with a set of switches linked to the
project network. The switches and network are linked with the Dependency variable, which is 1

if the phases are dependent and 0 if they are not.

The complete Development Tasks sector is shown in Figure 3-11.

Fraction Inspected found w Up error

O Coord Min Task Duration
QA |nspect|on rate -
Fraction Inspected found w our error / Coord Process Limit

Core Development Activities

Coordlnatlon Added Coordl tion
Coordination Backlog O\
RW Min Task [puration —"O
eI Own Err density |Coord Labor Limit

Known Rework

RW due to errors discd by
RW due fo Corrupted Tasks
—~J
Our Errors Discd by n
Task List

O\ Rework Tasks ease Tasks
i djto Dn

o Fraction Rel
RW Labor Limit

RW duUe Yoy Bscors discd by QA
™~

RW Process Li

Ta mplete: Tasks Released
DA inspection rate

O— ° O

asks Compl and Rel

BW Labor Limit r ompl and Rel
Basework

BW Task Avail Gap

Fraction Avail due to Ipf gate

BW Process Limit Tot TAsks Aval

O O

BW Min Task duration Fraction Avail due to Ext gates

Task List

Figure 3-11: The Development Tasks Sector

3.3.3.3 The Errors Sectors

Three sectors model errors: the internal, inherited, and released errors sectors. Errors generated,
discovered, and corrected within a single phase are modeled by the Internal Errors sector. A co-
flow structure (Homer, 1983 Appendix Q) is used in which the stocks and flows are directly
related to the stocks and flows in the Development Tasks sector. A comparison of Figure 3-11
and Figure 3-12 below shows their similarity. Flawed tasks are discovered through the Quality
Assurance activity. As described previously tasks found to be flawed move through the Find
Flawed Tasks flow from the Completed not Checked stock to a stock of Known Rework. These
tasks are corrected through the Rework Tasks activity and returned to the Completed not
Checked stock. The Internal Errors sector models the generation of flaws, which can be
generated during both Basework and Rework. This means that a task being reworked to correct

an existing defect may become flawed during the rework process. Because quality assurance

efforts are not perfect some flaws are missed (i.e. Type 2 errors are allowed). Therefore some
flawed tasks are mistakenly considered to be unflawed and are released with the unflawed tasks.
These errors are inherited by the phase's dependent downstream phases. The model assumes that
unflawed tasks mistakenly considered flawed are incorporated into the values of the Minimum

Activity Durations.

Our Errors Discd by Dn

Prob finding our error if exists
RW due to Our Errors discd by QA

—] Our Errors []

\ Q Fraction Inspected found w our error
Rec Rel Ret Own Errors O

Tasks Completed

'
e

Tasks Released

Rework Tasks

Errors Disc Own
% Disc Own Errors
4 \@\
Known Rework Coyfrect Errors

Disc Own Error Density Ii]
: Gen Errors Graph 19

Rework Tasks ‘/

Complete BW Tasks

o—

| Own Err derjsity

Rel Own Errors

Errors Undisc Own O Errors Rel Own
Release Tasks
Prob of Error generation _/@

Ref prob error generation

Prob error gen from Effects

QofP on Err Gen effect d

Figure 3-12: The Internal Errors Sector

The key equations used to model the internal errors sector are described below. Several of the
tables used in the Product Development Project Model to describe nonlinear relationships
between parameters have an "S" shape. These curves have upper and lower limits to output
values, small unit changes in output near those limits and larger unit changes in output near the
center of the input range. The reasoning behind this curve follows. One limit is at or near normal
operating condition (e.g. labor provided approximates labor needed). Changes in input values
near this limit generate no or small changes because developers do not perceive enough
digression from normal conditions to trigger a significant response. Developer responses and

output values change more as input conditions move further from normal and developers notice

and react to the variance. Output unit changes decrease again as input values approach the other

limit based on the assumption of smooth continuous developer response to limits.

Generate Errors(Phase)=(Basework(Phase)+Rework(Phase))*prob_Task flawed(Phase)

prob_Task flawed(Phase)=1-((1-Basic_prob_flawed Task(Phase))*(1-
prob_of err gen by QofP(Phase)))

Errors are generated during the basework and rework development activities. The probability of
error generation is based on two factors which combine to cause errors. The inherent complexity
of the task is reflected in the basic probability that a task is flawed. The impacts of the
development work are reflected in the probability of an error being generated by the quality of
practice. Each of these probabilities are used to find the probability of no error being generated
by the task complexity or quality of practice. These "clean" probabilities are combined to find
the probability of a task being flawed by neither of these factors. The resulting probability of no
error is used to find the probability of an error by subtracting from 1.
prob_of err gen by QofP(Phase)=TABHL(T3,Quality of Practice

(Phase)/Ref Qual of Practice(Phase),0,1,0.10)
T T3=0.55/0.45/0.36/0.28/0.21/0.15/0.10/0.06/0.03/0.01/0.00

The quality of practice influences the probability of error generation through a reverse "S"
shaped curve which does not increase errors if the quality of practice is above a reference level.
Excess quality of practice is assumed to not hurt a project. The curve rises to a maximum of 55%
when the quality of practice is zero. This assumes that there is a limit to the harmful impacts of
poor quality of practice on the generation of errors. This is based on the assumption that there is
some minimum underlying ability in the developers to perform development tasks which cannot
be totally eroded by the conditions of the project. This is a reasonable assumption when
developers are professionally trained and the process interacts using Mintzberg's (1979)

standardization of skills .

Several of the stocks and flows in the internal errors sector are directly analogous to stocks and
flows in the development tasks sector. The error parameters differ from the task parameters due

to the densities of flaws. The following equations are used to model those densities.
Compl Task error density(Phase)=Our Undiscd Errors(Phase)/(Tasks Completed(Phase))

Our Discd Error density(Phase)=Our Discd Errors(Phase)/(Known Rework(Phase)+1e-9)

Rel Task error_density(Phase)=Our_Errors_Released(Phase)/
(Tasks Released(Phase)+t1e-9)

Clean_Task error density(Phase)=(Compl Task error density(Phase)*
(1-Prob_finding our error if exists(Phase)))/((1-Compl Task error density(Phase))+
(Compl_Task error density(Phase)*(1-Prob finding our error if exists(Phase)))+1e-9)

This last density is the number of unflawed tasks divided by the sum of the number unflawed and
flawed but missed tasks. The numerator is the product of the probability of a task being flawed
and the probability of finding a flaw if it exists. The denominator is the numerator plus the

compliment of the probability of a task being flawed.

The error coflow flow equations are formed by combining the densities and the task flows. The

error coflow stock equations are the accumulations of the flows.

Our Undiscd Errors(Phase)=Our Undiscd Errors(Phase)+dt*(Generate Errors(Phase)-
Release Errors(Phase)-Disc Our Errors(Phase)-Errors lost in Corrupted Tasks(Phase))

Disc_Our_ Errors(Phase)}=RW _due to InPhase QA(Phase)

Errors lost in Corrupted Tasks(Phase)=Compl Task error density(Phase)*
RW due to Corrupted tasks(Phase)

Release Errors(Phase)=(Release Tasks(Phase)*Clean Task error density(Phase))
Our Errors Released(Phase)=Our Errors Released(Phase)+dt*
(Release Errors(Phase)-Receive Our Errors fr Dn(Phase))

Receive Our Errors fr Dn(Phase)=Total Err disc by Dn(Phase)t
Total Corrupted by Upstream_Retraction(Phase)

Our_Discd_Errors(Phase)=Our_Discd_Errors(Phase)+dt*(Receive_ Our Errors_fr Dn(
Phase)+Disc_Our Errors(Phase)-Correct Our Errors(Phase))

Correct Our_ Errors(Phase)=Rework(Phase)*Our Discd Error density(Phase)

Total Err disc by Dn(Phase)=Up Flawed Tasks found(Phase,1)+
Up Flawed Tasks found(Phase,2)+Up Flawed Tasks found(Phase,3)+
Up Flawed Tasks found(Phase,4)+Up Flawed Tasks found(Phase,5)

The total number of errors returned to a phase is the sum of the errors released by that phase and

discovered by all the downstream phases.

Prob finding our error if exists(Phase)=TABHL(T2,QA _Status(Phase),0,20,2.0))
T T2=0.00/0.335/0.535/0.685/0.81/0.88/0.925/0.96/0.985/1.00/1.00

The probability of finding an existing error is based on the adequacy of the quality of practice.
No errors can be found if the quality of practice is zero. This assumes that the project conditions
can degrade the quality of the work done by the developers to such a degree that they miss all the
errors in the work they inspect. This is a reasonable lower bound. The probability of finding
errors based on the adequacy of the actual quality of practice increases as the actual quality of
practice rises above a reference value. An upper bound of finding all errors (assuming other
factors do not prevent discovery) is approached as the quality of practice reaches 18 times the
reference value.

prob_Task flawed and Found(Phase)=Prob_finding our error if exists(Phase)*
Compl Task error_density(Phase)

The probability that a task is both flawed and discovered to be flawed is the product of the
probabilities that it is flawed and the probabilities that the flaw is found.

Errors received by a phase from an upstream phase are modeled with the Upstream Errors sector.
Figure 3-13 shows an example of this structure for a focal phase with two upstream phases. The
Product Development Project Model can model the inheritance of errors from a flexible number
of phases. These errors corrupt tasks done in the focal phase. Each phase discovers a portion of
its tasks which have been corrupted by the errors it inherits based on the quantity and
effectiveness of its quality assurance efforts. Multiple corruptions of the same task are eliminated

and the net corrupted tasks are used in the Development Tasks and Internal Errors sectors.

Up1 Rel Task Error density

QOur to Up1 size

Upstream Errors -

Up1 Errored Tasks found

Net Corrupted Tasks

@

Duplicate Corruption discoveries

prob Task Corrupted by Up

Up2 Errored Tasks found

prob Task has Up2 Etrror

N\

“‘“ Tasks Corrupted by Up2 errors

< O

Our to Up2 size QA Process Limit

Up2 Rel Task Error density

Figure 3-13: The Upstream Errors Sector

The key equations used to model the upstream errors sector are described below.

prob_Task Corrupted and found(up,Phase)=prob find Up error if exists(Phase)*

Rel Task error density(up)*Dependency(up,Phase)
The probability that an inherited task is both flawed and discovered to be flawed is the product of
the probabilities that it is flawed and the probabilities that the flaw is found.

Tasks Corrupted _and Found(up,Phase)=QA_inspection_rate(Phase)*

prob_Task Corrupted and found(up,Phase)

The number of tasks found to be corrupted is the probability that finding corrupted tasks times
the rate at which tasks are being inspected in the downstream phase.
Corrupted task discoveries(Phase)=Tasks Corrupted and Found(1,Phase)+

Tasks Corrupted and Found(2,Phase)+Tasks Corrupted and Found(3,Phase)+
Tasks Corrupted _and Found(4,Phase)+Tasks Corrupted and Found(5,Phase)

The total number of tasks discovered to be corrupted is the sum of the corrupted tasks found
from all upstream dependent phases. Phases not linked to the focal phase have been assigned
zero tasks corrupted. This value can include multiple discoveries of the same flawed task.
percent Multiple Corruption discoveries(Phase)=
(prob_Task Corrupted and found(1,Phase)*prob Task Corrupted and found(2,Phase))+
(prob_Task Corrupted and found(1,Phase)*prob Task Corrupted and found(3,Phase))+
(prob_Task Corrupted and found(1,Phase)*prob Task Corrupted and found(4,Phase))+
(prob_Task Corrupted and found(1,Phase)*prob Task Corrupted and found(5,Phase))+
(prob_Task Corrupted and found(2,Phase)*prob Task Corrupted and found(3,Phase))+
(prob_Task Corrupted and found(2,Phase)*prob Task Corrupted and found(4,Phase))+
(prob_Task Corrupted and found(2,Phase)*prob Task Corrupted and found(5,Phase))+
(prob_Task Corrupted and found(3,Phase)*prob Task Corrupted and found(4,Phase))+

(prob_Task Corrupted and found(3,Phase)*prob Task Corrupted and found(5,Phase))+
(prob_Task Corrupted and found(4,Phase)*prob Task Corrupted and found(5,Phase))

The total probability of a flaw discovery being repeated is the sum of the probabilities of a
multiple discovery by each of the possible phase interactions. The probability of a repeated
discovery is the product of each of the individual discovery probabilities.
Multiple_Corruption_discoveries(Phase)=QA _inspection_rate(Phase)*
percent Multiple Corruption_discoveries(Phase)
Multiple discoveries occur at the rate of inspection times the percent of tasks found more than
once to be flawed.

Net Corrupted and Found Tasks(Phase)=Corrupted task discoveries(Phase)-
Multiple Corruption_discoveries(Phase)

The net number of tasks found to be corrupted is the actual number of corrupted and flawed tasks
corrected for multiple error discoveries. This is the total number of discoveries less the number
of multiple discoveries.

Up Flawed Tasks found(up,Phase)=Tasks Corrupted and Found(up,Phase)*
TaskListScale(up,Phase)

Total Err disc by Dn(Phase)=Up Flawed Tasks found(Phase,1)+
Up Flawed Tasks found(Phase,2)+Up Flawed Tasks found(Phase,3)+
Up Flawed Tasks found(Phase,4)+Up Flawed Tasks found(Phase,5)

The flawed tasks returned to the upstream phase are those discovered by the downstream phases
increased or decreased by the relative sizes of the upstream phase and each of the dependent
downstream phases. The total returned flawed tasks is the sum of those returned from all

downstream phases.

prob_find Up error__if exists(Phase)=MIN(1,Coord_effect on_Find Up_ Errors(Phase)*
QofP_Error Disc effect(Phase))

Coord_effect on Find Up Errors(Phase)=TABHL(T1,Coord_Status(Phase),0,1,0.10)
T T1=0.00/0.015/0.045/0.115/0.265/0.54/0.715/0.84/0.92/0.975/1.00

QofP_Error Disc effect(Phase)=TABHL(T4,Quality of Practice(Phase)/
Ref Qual of Practice(Phase),0,1,0.10)
T T4=0.20/0.20/0.22/0.25/0.3/.4/.65/.7/.85/.95/1.0

The probability of finding an upstream error if it exists is impacted by the adequacy of
coordination and the level of the quality of practice. Both relationships have an "S" shape. The
lower limit of the coordination relationship is zero, indicating that if there is no coordination
there is no chance of finding upstream errors. The quality of practice relationship has a lower
limit of 0.20, indicating that some errors could be found if two teams were coordinating but one
had a low quality of practice. Both upper limits are 1.0 since finding more than 100% of the

existing errors is unreasonable.

Two types of project errors cause tasks to flow from the Tasks Released stock to the Known
Rework stock. The first is errors which are released to downstream phases, discovered there, and
returned for correction. The second type of project error is upstream errors which have been
discovered and require the rework of completed and released tasks in downstream dependent
phases. This represents the notification of other phases of an error by developers. This second
type of errors reflects the following conditions: the middle phase in a sequential set of three
phases completes its tasks before the final phase discovers errors created and released by the first
phase and not discovered by the middle phase. The final phase returns those errors to the first
phase for correction, generating rework for the first and final phases. Since the middle phase is
completed these newly discovered errors will not be reflected in the corruption of tasks in the
middle phase. In real projects these errors by the first phase will require the rework of released
tasks in the middle phase as well. This relationship models the notification of downstream phases
when an upstream phase is notified that it has made an error. The model uses the following

equation to model this flow.

RW _due to Dwnstrm QA(Phase)=Total Err disc_by Dn(Phase)+
Total Corrupted by Upstream Retraction(Phase)

The flow is the sum of the flaws due to released errors discovered downstream and the flaws

caused by the retraction of finished work upstream due to error discoveries. The two contributors

to the sum are the totals of the errors for each of the upstream or downstream phases linked to

the focal phase.

3.3.4 The Resources Subsystem

The structural components of the Resources subsystem are based on previously constructed and
tested system dynamics models which are documented in the literature. Table 3-1 at the end of
the model structure description lists the primary model references for each model sector. The
Resources subsystem consists of the Gross Labor, Labor Allocation, Workweek, Experience,

Quality of Practice, Development Limit and Expected Productivity sectors.

3.3.4.1 The Labor Sectors

The Gross Labor sector (Figure 3-14) models the quantity of labor used in a development phase.
Headcount is assumed to be the number of full time, rested, experienced product developers.
Therefore a rested experienced developer which spent half of his or her time developing the
product would be considered 0.50 person. Headcount is changed within the range set by the

minimum and maximum headcount to bring the actual headcount to

