
Chapter 2 

Literature Review 

2.1 Introduction 

This chapter describes and evaluates the literature as it pertains to this research. Traditional 

characterizations of product development projects are described, followed by of characterizations 

which have appeared over the last decade. These descriptions provide the basis for the survey 

and evaluation of product development models for investigating the dynamic impacts of process 

structure on performance. This is followed by a more detailed evaluation of existing system 

dynamics models of projects for their contribution to this work. Finally, gaps in the current 

literature are identified as the starting point for the specific work of this research.  

2.2 Traditional Characterizations of the Product Development Process 

The traditional model of the product development process and organization is based upon a 

sequential and functional approach to development (Wheelwright and Clark, 1992; Zaccai, 

1991).  In the traditional paradigm the development process is a series of development activities 

from conceptualization to product introduction. An example of the traditional development 

process can be seen in Boeing's description of their development process for the 727-100 airliner 

in the 1960s (Maxam, 1978):   

 



"There were three distinct formal Engineering phases, following an informal series of 
concept studies, of the successful airplane program. Although these phases appeared to 
overlap and blend together this appearance was caused more by the individual 
scheduling of each element of the design than by the actual blending of the phases."  

 

Boeing's description reveals their intention to keep the development phases separate and 

sequential. Many researchers have described the traditional process and given examples from 

industry (e.g., Wheelwright and Clark, 1992; Womack et al., 1990; Nevins and Whitney, 1989; 

Hayes et al., 1988). Clark and Fujimoto (1991b) describe this paradigm as appropriate "...when 

markets were relatively stable, product life cycles were long, and customers concerned most with 

technical performance." 

 

Substandard project performance under the traditional paradigm generates friction among 

functional groups, little and poor coordination, and bottlenecks in the flow of products through 

the development process (Ulrich and Eppinger, 1994; Hayes et al.; 1988) . This can extend cycle 

times or incur additional resource use, thereby increasing costs. Increased resource use can be 

seen in Boeing's description of how its 727-100 program responded to changes:  "...even after the 

Design Development Phase was underway for some time, the designer was still faced with many 

changes as more and more technical data was being generated, usually as the result of the testing 

process. It is also interesting to note that the Engineering schedules did not have the luxury of 

spare time, thus these late breaking changes had to be accommodated through overtime, work 

around, and a high dose of ingenuity of all concerned both inside and outside the Engineering 

organization." (Maxam, 1978). 

 

In the traditional product development paradigm the three traditional measures of project success - 

time, cost, and quality/scope - are increased or decreased to improve total project performance. This 

can take the form of trading performance among the three measures in a zero-sum environment 

(Rosenau and Moran, 1993). But more mutually beneficial changes are often also available. This 

approach can be seen in Boeing's reduction of scope in the development of the 777 aircraft. Boeing 

completely avoided full-scale physical mock-ups of its 777 airplane by designing and testing with 

software (Stix, 1991). Gomory (1991) provides another example of reducing cycle time using scope 

reduction. A team of developers at IBM used previously developed standard components in the 

development of computer terminals instead of developing new components, thereby reducing cycle 

time by five months.  

 



The Critical Path Method and PERT (program evaluation and review technique) are two 

traditional tools which are widely used to manage development projects. Although initially 

developed for schedule control they have been expanded to manage resources (and therefore 

costs). They are based upon the traditional paradigm of development. The Critical Path Method 

disaggregates the development process into activities which are related through their temporal 

dependencies. Each activity is treated as a monolithic block of work described only by its 

duration. The temporal dependencies describe the constraints which earlier (upstream) activities 

impose on later (downstream) activities. The constraints are described with relationships between 

the beginnings and completions of activities. The logic of the schedule can be represented in a 

network diagram. A simple example of a network diagram is shown in Figure 2-1.  

 

 

Figure 2-1:  A Network Diagram for Critical Path Method Schedule Management 
(Halpin and Woodhead, 1980) 

Critical Path Method calculations identify a project's critical path, which is the sequence of tasks 

whose combined durations define the minimum possible completion time for the entire set of 

tasks (Ulrich and Eppinger, 1994). Earliest and latest possible start and finish dates of all 

activities within a schedule determined by the critical path can be calculated, as can the available 

slack times. The results of this planning and analysis can be presented for broader 

communication with a Gantt chart. An example of a Gantt chart from Moder et al. (1983) is 

shown in Figure 2-2.  
 



 

Figure 2-2:  A Gantt Chart Representation of a Critical Path Method Schedule 
(Moder et al., 1983) 

The Critical Path Method provides several tools for trading away good performance in one 

measure for improved performance in another. For example durations of activities along the 

critical path can be shortened by adding more resources (Ulrich and Eppinger, 1994; 

Wheelwright and Clark, 1992; Moder et al., 1983). The Critical Path method provides a time-

cost-tradeoff method for analyzing the effectiveness of accelerating alternative activities. The 

effects of altering activity dependencies among activities to shorten the critical path can be 

investigated (Barrie and Paulson, 1984; Moder et al., 1983).  

 

The Critical Path Method is easily understood and applied. It provides a set of fundamental tools 

for characterizing and managing a development project in temporal terms. However the method 

has critical limitations. The method assumes no rework of errors which are undiscovered when 

the phase is "completed" and that the rework of errors discovered within a phase's duration is 

incorporated into the phase duration estimate. The method cannot explicitly represent bilaterally 

coupled activities and therefore cannot describe loops, feedback, or iteration in a system. It also 

assumes that the development project remains unchanged over time. This prevents the method 

from modeling time-varying and endogenous factors such as developer skill, training, and 

coordination issues. Therefore the Critical Path Method is unable to model the highly coupled 

aspects and dynamic nature of the product development process. Finally, the Critical Path 

Method cannot describe the rational which underlies the structure description and therefore lacks 

depth of information content.  

 

PERT (Project Evaluation and Review Technique) uses an approach to schedule management 

which is similar to the Critical Path Method. This method was developed for processes such as 

product development (Moder et al., 1983). PERT addresses one of the limitations of the Critical 



Path method by incorporating the uncertainty inherent in the estimates of the durations of 

development activities into a scheduling tool. Three estimates of project duration are used for 

each activity to model the variability of durations. The PERT method calculates the probabilities 

of a project meeting specific schedule objectives. PERT incorporation of duration uncertainty 

makes it more valuable in managing less certain processes such as product development. 

However PERT requires lots of data and is limited in accuracy by the estimates of variability of 

activity durations. Like the Critical Path method, PERT cannot explicitly represent coupled loops 

or feedback, assumes the project is static, and cannot model causes of process behavior.  

2.3 Recent Characterizations of the Product Development Process 

Market and technology changes described previously and the limitations of traditional project 

management methods led to the development of a new image of effective product development 

(Nevins and Whitney, 1989; Hayes et al., 1988). Although this new image is still emerging its 

central features have been articulated by researchers and applied by industry. The new paradigm 

fundamentally alters both the product development process and organization. Researchers 

currently envision product development as a collection of highly coupled activities which are 

performed iteratively and often simultaneously by cross functional product development teams 

(Ulrich and Eppinger, 1994; Wheelwright and Clark, 1992; Womack et al., 1990). The dominant 

change in the development process from the traditional to the new paradigm is from sequential 

activities to concurrent activities (concurrent development). The dominant change in the 

development organization from the traditional to the new paradigm is from functional 

departments to cross-functional development teams.  

2.3.1 Concurrent Development  

Concurrent development's primary purpose is cycle time reduction. Concurrent development 

improves cycle times by planning, facilitating, and executing multiple development tasks 

simultaneously instead of sequentially as in the traditional development paradigm. This requires 

breaking each development activity into more smaller tasks and starting downstream tasks as 

soon as all prerequisites are available. Figure 2-3 illustrates the fundamental difference between 

the traditional ("Phased Approach") development process and concurrent design ("Overlapping 

Approach"). 

 



 

Figure 2-3:  Sequential and Concurrent Product Development Processes 
(Hayes et al., 1988)  

Boeing moved from the traditional development process used to develop the 727-100 to a 

concurrent approach for the development of its 777 aircraft. To apply concurrent development in 

the design portion of the project Boeing overlapped its fifteen previously-sequential design and 

engineering steps to allow work to proceed on many development activities simultaneously (Stix, 

1991). The concurrent approach was also applied at the project level. For example Boeing 

separated the product definition phase into three tasks and began major assembly of the aircraft 

before the product definition was 90% complete (Peterson and Sutcliffe, 1992).  

 

Large reductions in cycle time can be realized by applying concurrent development 

(Wheelwright and Clark, 1992, Womack et al., 1990; Nevins and Whitney, 1989). But the cycle 

time reduction comes at the cost of increased complexity. The disaggregation of development 

activities into smaller tasks increases the number of dependencies and the number of required 

information transfers. Because downstream tasks are often started on incomplete information the 

number of design iterations (rework) is also increased. Boeing's development of the 777 can 

illustrate the impacts of concurrent design. Boeing's process description for the 777 explicitly 

includes eleven iterative loops among nine development phases (Peterson and Sutcliffe, 1992). 

The additional coordination required for Boeing to use concurrent development was enormous. 

Boeing considered traditional development information systems wholly inadequate and therefore 

developed the 777 completely on computers. Coordination of the work of 4,000 engineers on the 



130,000 different parts of the airliner is a major reason (Stix, 1991). As illustrated by the Boeing 

777, managing increased iteration is an important issue raised by the use of concurrent 

development.  

 

Steward (1981) and Eppinger et al. (1990) developed the Design Structure Matrix to investigate 

the iterative nature of product development. The Design Structure Matrix is a square matrix with 

the full set of development activities as both row and column labels. Each cell within the matrix 

represents a unidirectional dependency between two activities. Design Structure Matrices have 

been used to map (Smith and Eppinger, 1991) and predict (Morelli and Eppinger, 1993) 

information flows among activities. The matrix can be used to identify information flows as 

sequential, parallel, or coupled and for the efficient ordering of development activities. Chao 

(1993) applied the Design Structure Matrix to study the use of iterations in making time/quality 

tradeoff decisions. The focus was a portion of product development at a large semiconductor 

firm (DEC). Two strategies for making time/quality decisions (faster iteration and higher quality 

iteration) were proposed and tested.  

 

Osborne (1993) applied iteration maps and the Design Structure Matrix to describe product 

development at a leading semiconductor firm (Intel) in terms of cycle time. Osborne investigated 

variability in cycle times. His conclusions about the impacts of iteration on cycle time are 

pertinent to this research. They include: 

 
"Iteration is a significant component of product development cycle time, typically about 
one third of project effort, but can represent as much as two thirds or as little as 13% of 
project effort. 

 
Few variables independently influence cycle time. Major project iterations are 
significant. Another key variable correlating with cycle time is project complexity in 
terms of man hours necessary to develop the product.  
 
...Iterative modeling tools provide a means to think about the impact of changes on the 
total system." 

 

Osborne's work demonstrates the need for additional investigation of the impacts of 

dependencies among development activities on cycle time. It also points to the need for a better 

understanding of how variables which impact cycle time can be identified and managed 

(coordinated). The Design Structure Matrix is a potentially useful tool in describing and 

investigating information transfer and iteration for cycle time reduction. But the Design Structure 



Matrix cannot directly model the structure of a development process over time. Like the Critical 

Path method, the Design Structure Matrix assumes that the dependencies between phases are 

fixed or that the distribution is fixed. Osborne's research supports other work which suggests that 

iteration in product development is a primary cause of the dynamic nature of product 

development process (Cooper, 1994, 1993a,b,c; Ford et al., 1993; Seville and Kim, 1993; Kim, 

1988). Iteration is therefore suspected to be a primary driver of cycle time performance as well 

as a measure of quality.  

2.3.2 Cross-Functional Development Teams 

A primary purpose of cross-functional teams is improved quality and effectiveness through 

improved coordination. Cross-functional development teams are groups of development 

specialists from different functional domains who work together on a single development 

project. The formation of cross-functional development teams is an extension of the move away 

from functional-based groups to the matrix structures used in the traditional development 

paradigm. Hayes et al. (1988) describe and Wheelwright and Clark (1992) later refine a more 

detailed model of this shift with intermediate steps defined by the level of influence of project 

managers. Restructuring product development organizations away from function-based groups 

and toward cross functional development teams has also become a widely used approach to 

reducing cycle time (Clark and Fujimoto, 1991b).  

 

Boeing's 777 project provides an example of cross-functional development teams (Peterson, 

1992; Stix, 1991). Boeing modified its matrix structure for the 777 project. Chief Engineers lead 

functional domains such as propulsion, avionics, structures, electrical, flight deck, and 

aerodynamics. They are responsible for functionality, reliability, maintainability, 

manufacturability, cost, and certification. Chief Project Engineers are responsible for the 

integration of at least one of the airplane's sixty-five individual systems. Additional Chief Project 

Engineers integrate these individual systems within the airplane as a whole and integrate the 

development project with external participants such as customers and certification testing 

organizations. Boeing formed over 270 cross-functional development teams within this structure. 

Peterson's (1992) description of the teams illustrates the cross-functional nature of their role:  

"These teams are defined around individual airplane systems, and are working cross-systems 

integration and vertical development issues (life cycle) simultaneously."  

 



However several researchers (Bacon et al., 1994; Clark and Fujimoto, 1991b; Dean and Susman, 

1991; Takeuchi and Nonaka, 1991) and many firms (e.g., see Clark and Fujimoto, 1991b, pg. 

105) have realized that the formation of cross-functional teams alone does not improve cycle 

time. Wheelwright and Clark (1992) cite a case in which unsuccessful cross-functional teams 

increased cycle times. They identify overextended managers as a contributing factor in cross-

functional team failures. Reasons cited by other researchers vary. Dean and Susman (1991) 

found friction between members of the team from design and manufacturing. Wheelwright and 

Sasser (1991) cite a lack of planning due to a lack of information. Nevens et al. (1991) identified 

a lack of cross-functional skills in team members and no one taking responsibility for 

coordination.  Clark and Fujimoto (1991b) found an automobile development team consisting of 

only liaison people and no developers. The team failed because it was ignored by those 

developing the product.  

 

The new development paradigm addresses the increased coordination needs of projects with 

cross-functional development teams. The apparent assumption is that cross-functional teams 

address the dynamic drivers of cycle time better than traditional structures. But the mixed results 

of applying cross-functional teams for improved project performance indicates that the use of 

cross-functional development teams does not adequately address dynamic aspects of 

development projects.  

2.4 Summary of the Product Development Process Literature Review 

The existing literature describes and documents recent fundamental changes in product 

development processes and organizations from a sequential functional approach to a concurrent 

team approach. In doing so it tightly links dynamic project features such as iteration with project 

performance. But the existing research does not described in detail or explain the relationship 

between dynamic features and performance. This deficit is apparent in the industry in which 

product development has been studied most extensively, the automobile industry. Cusumano and 

Nobeoka (1991) identify the need for additional research concerning coordination and cycle time 

in their review and critique of research of product development in the automobile industry. The 

current research develops an improved understanding of the relationship between dynamic 

project features and performance and how coordination can be used to improve performance.  
 



2.5 System Dynamics Literature Review 

Several models using the system dynamics methodology (Forrester, 1961) incorporate dynamic 

features into models of single product development projects. The feedback structures of system 

dynamics models describe the modeler's hypotheses about the dynamic behavior of the project 

and form a framework for describing their investigations of project behavior. The key loops 

abstracted from these models have been aggregated into six feedback structures.  

2.5.1 Six Key Feedback Structures in System Dynamics Models of Projects 

2.5.1.1  The Labor Structure 

The labor structure includes three balancing feedback loops which increase labor effort as a 

response to schedule pressure is common in project management and central to several models of 

product development. The response can adjust the amount of effort (Labor Quantity), how hard 

people work (Labor Intensity) or both as shown in Figure 2-4.  
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Figure 2-4:  The Labor Structure 

Product development models have explored these fundamental relationships more deeply in 

several directions. Some of the variables and relationships describe intermediate variables in the 

linkage between management policies and project performance. Projections of labor needs have 

been modeled by Cooper (1980). The impacts of Labor Quantity on Labor Intensity have been 

studied by Reichelt (1990). Cooper (1980) added types of labor and characteristics of labor. 

Abdel-Hamid (1984) used the impact of experience on labor productivity. Jessen (1990) 



investigated project manager motivations with a resource-based model. Development resources 

other than labor (e.g. construction materials or testing machines) can be modeled with the same 

structure as the Labor Loops (e.g. Cooper, 1980). However existing models generally assume 

that labor is the dominant resource in product development projects.  

 

The Labor Structure provides a method of describing the impacts of certain management 

policies. Those policies can be viewed as plans for altering the strength of certain relationships 

between variables which are represented by the arrows. For example, a project manager may 

quickly add more people to a project when it gets behind schedule. This policy is attempting to 

increase the strength of the causal link between the variables "Schedule Pressure" and 

"Headcount" and therefore increase the influence of the middle feedback loop.  

2.5.1.2 The Schedule Structure 

The schedule structure describes another common project management tool, slipping the 

deadline in response to Schedule Pressure (Figure 2-5). Many models include this feedback loop 

(Roberts, 1974; Richardson and Pugh, 1981; Abdel-Hamid, 1991).  
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Figure 2-5:  The Schedule Structure 

The Schedule Structure uses a floating goal structure to describe a common feature of project 

management practice. In a floating goal structure the goal (the Deadline Date) drifts toward the 

system conditions (the Expected Time to Completion). In this example the purpose is to reduce 



the Schedule Pressure. This drift is slowed by the Resistance to Slip Deadline Date, which can 

represent the development team's commitment to schedule performance. Project management 

policies can change the influence of the schedule structure on project performance by altering the 

Resistance to Slip Deadline Date, for example with liquidated damages which impose a cost on 

the project for slipping the deadline date.  

2.5.1.3 The Rework Structure 

Rework is the correction of errors required to make the product functional. It is distinguished 

from quality, which has its own loops, by the fact that rework must be done, whereas quality 

work is optional. For example, work to fix a software bug which prevents the saving of a word 

processing document is rework, whereas work to accelerate the saving of a word processing 

document augments quality. Rework is a part of all large development projects, although the 

amount varies widely (Cooper, 1993a,b,c). The Rework Structure describes the effects of this 

additional effort on a project's progress toward completion (Figure 2-6).  
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Figure 2-6:  The Rework Structure 

The balancing loop in Figure 2-6 represents the intended impact of a management response to an 

increase in schedule pressure - reduce the work remaining. The two reinforcing loops represent 

the impacts of the unintended side effects of the rework structure - the generation of additional 

errors which require correction.  

 

Simpler versions of the Rework Structure have driven some project models (Seville and Kim, 

1993; Jessen, 1990; Kim, 1988). But the separate modeling of Undiscovered Errors by Cooper 



(1994, 1993a,b,c, 1980) and others has added significant new insights into the impacts of policies 

addressing rework on project performance. Cooper (1993a) estimates the delay in the discovery 

of errors to be approximately 1/4 to 3/4 of the time required to design the work the original time 

and concludes that this delay is one of the most important determinants of cycle time 

performance. Management policies can have a large impact on performance by reducing this 

delay, effectively weakening the influence of the lower reinforcing loop. Those policies could be 

rudimentary forms of communication between project phases such as quality assurance checking 

for errors or development team meetings. Coordination policies which increase flexibility may 

also weaken this loop though these relationships.  

2.5.1.4 The Available Work Structure 

The performance of projects can be constrained by the availability of work. Some phases of 

projects have internal constraints on work availability. For example, in the steel erection phase of 

a high-rise building project the second floor steel work cannot be done until the first floor steel 

work is completed. In multiple-phase projects performance can also be constrained by the 

amount of work released by preceding phases. For example, first floor steel erection cannot 

begin until the first floor steel is fabricated, which cannot begin until that steel is designed.  

 

The limited availability of work to an individual phase of a project is the basis of some models of 

projects (queuing theory and the critical path and PERT methods). The constraints imposed by 

the available work impact the rate of basework completion through the availability of incomplete 

basework as shown in Figure 2-7.  
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Figure 2-7:  The Available Work Structure 



Basework is work being performed on development tasks for the first time. The reinforcing loop 

in the available work structure represents the release of new work for completion due to 

completing work within the development phase or by an upstream development phase. The 

balancing loop in the available work structure represents the reduction in the basework available 

but not completed (the work queue) due to the completion of work. The Upstream Tasks 

Released and Precedence Constraints are the basis for modeling multiple interdependent phases 

of a development process. These precedence relationships describe the progress possible by a 

downstream phase based upon the progress made by the upstream phases on which it is 

dependent (external constraints) and the progress possible based upon progress within the phase 

itself (the phase's internal constraint). The critical path and PERT models are based on 

descriptions of these external constraints which relate the start and finish times of phases (Moder 

et al., 1983). Typical relationships are independent (no relationship), sequential, and concurrent 

with a difference in start times. Cooper (1980) describes a large system dynamics model of 

shipbuilding in which each development project has at least seven phases. In this model 

Availability of Prior Work is explicitly modeled as a constraint on Subsequent Work Progress 

although the specific structure is not available. Reichelt (1990) expands the description of this 

relationship between the engineering and construction phases and relates it to the effects of 

design changes. Richardson (1982) and Richardson and Paich (1981, 1980) used product 

development as the first of two phases in the investigation of cycle time. These models were 

built to replicate specific processes and are therefore very project-specific. Homer et al. (1993) 

subsequently developed more general descriptions of the constraints on work progress imposed 

by both preceding phases and the work within the phases itself, as will be described in the next 

section. Two models (Seville and Kim, 1993 and Ford et al., 1993) have attempted to generalize 

the phases of a development project. In both cases only two phases were modeled and the 

relationships between the phases were not generalized.  

2.5.1.5 The Quality Structure  

The quality structure represents the project management functions which effect the optional 

repetition of development tasks (Figure 2-8). The optional or flexible nature of the work 

reflected in the quality structure distinguishes it from the rework structure, which is required for 

basic product functionality. The Quality Standard reflects the level of fulfillment of customer 

objectives (Fiddaman, Oliva and Aranda, 1993) as well as the number of imperfections released 

with the product. The quality structure reflects a very real aspect of project management which is 



not reflected in the rework structure:  the voluntary setting of a product performance standard 

and adjustment of the development process to meet that standard. This can be particularly 

influential because project managers can influence voluntary iteration with their decisions but 

must perform rework. 
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Figure 2-8:  The Quality Structure 

The right reinforcing loop in the quality structure represents one of the intended impacts of 

setting quality standards - improve product quality and raise the quality standard. The balancing 

loop represents the resistance to raising quality standards caused by an increasing quality gap. 

The lower reinforcing loop represents a second benefit of managing quality standards - the faster 

completion of the project.  

 

Ford et al. (1993) separated required and voluntary iteration in product development and used a 

Quality Standard to drive the amount of iteration for quality, while keeping rework not optional. 

Higher Quality Standards resulted in longer cycle times, depicting a traditional perspective of a 

quality-for-time tradeoff faced by project managers. Fiddaman, Oliva and Aranda (1993) 

explored the evolution of the customer requirements using two of Kano's requirement types and 

a noise factor.  

 

 

2.5.1.6 The Scope Structure   



The final feedback loop is the scope structure. It represents the adjustment of project size (Figure 

2-9). Examples of scope reduction adjustments which are not quality adjustments are narrowing 

the market and therefore product performance requirements and deleting design for 

manufacturability. 
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Figure 2-9:  The Scope Structure 

The balancing feedback loop describes the typically-intended impact of scope reduction, to 

accelerate progress by reducing the amount of work to be done. The reinforcing loop is typically 

unintended and sometimes goes unrecognized. Less scope may release work that was waiting on 

the now-deleted work, thereby increasing the work waiting to be done (the Work Queue). Cooper 

(1980) included adjustments to scope in the shipbuilding model. The dynamics of Fiddaman, 

Oliva and Aranda's (1993) investigation the growth of project scopes across projects, may 

influence a single project. Richardson and Pugh (1981) study the impact of when project scope is 

estimated on cycle time and manpower required.  

 

The six feedback structures that represent existing system dynamics models of product 

development and the loops which result from their combinations cannot be clearly shown on a 

single diagram. The complexity of the combination of these loops exceeds the bounded 

rationality of humans to simulate or predict with any accuracy. This helps explain the difficulty 

in managing development projects and investigating the impacts of management policies on 

performance. It also supports the need for computer-based simulation models for investigating 

coordination.  

2.5.2 System Dynamics Models of Product Development Projects 



Several researchers have built system dynamics models of product development. Roberts (1974) 

built a relatively small (30 equations) project model which investigated the management of R&D 

projects. The primary material which flows through the product development process is generic 

"job units". Completion of job units is based upon available manpower and productivity. 

Management decisions are based upon perceived progress, which includes both actual progress 

and perceptual errors. These decisions include manpower changes, which directly impacts the 

job unit completion rate.  

 

Cooper (1980) and Reichelt (1990) described the construction and use of large system dynamics 

models by Pugh-Roberts Associates of large scale shipbuilding operations for claims settlement. 

Cooper's model included product development in each of the two projects modeled. This model 

focused upon rework caused by customer changes. Manpower was a primary cost driver and 

therefore key to the model structure. The model simulates the major phases of shipbuilding 

operation. Cooper modeled (1980) and subsequently elaborated on (1994, 1993a,b,c) the impacts 

of rework in projects on cycle time. The model simulates the initial completion of development 

tasks (basework) and corrective action (rework). A delay in discovering defects slows the 

completion of unflawed development tasks. The process structure propagates change across 

project phases with interdependent schedules and disruptions which reduce quality and require 

rework. Reichelt (1990) describes the dependence of downstream project activities on the 

completion of upstream activities in a two-stage process. Cooper and Reichelt's work adds three 

valuable concepts:  1) the ability of customers to influence cycle time and increase coordination 

needs in product development processes, 2) the distinction between direct (first-order) and 

indirect (higher-order) impacts and 3) competition for resources among product development 

activities.  

 

Richardson and Pugh (1981) developed and explained in detail a model focusing upon the 

management of single R&D projects. Richardson and Pugh use rework to expand on the 

Resource Effectiveness portion of the fundamental structure used by Roberts. They distinguish 

between work performed satisfactorily and tasks requiring rework. Both satisfactory tasks and 

rework are modeled explicitly. This allows the incorporation of new and potentially important 

influences on cycle time and coordination such as the error rate in development activities and the 

rate at which errors are discovered. Richardson and Pugh identify the impractical nature of some 

cycle time reduction policies such as assuming no rework or assuming a constant project scope. 

They use their model to illustrate the effects of different assumptions and policies on cycle time.  



 

Abdel-Hamid (1984) modeled software development to better understand project management in 

light of cost overruns, late deliveries, and user dissatisfaction. The model simulated software 

production as influenced by human resources management, planning, and controlling. In this 

model schedule pressure influences resource quantity through the prediction of the work force 

size necessary to complete the project on schedule. The model's schedule pressure influences 

resource effectiveness through productivity, the error generation rate, and worker allocation to 

quality assurance.   

 

Jessen (1990) investigated the behavior and impacts of project manager motivations with a 

model based upon resources, rework, targets and resource strategy. This model focused on the 

roles of goal seeking (balancing) feedback loops (pg. 250) in projects. It expands the description 

of the motivational structures in projects. 

 

Homer et al. (1993) modeled project process structure explicitly by introducing "gate functions" 

to describe the constraints on work progress imposed by both preceding phases and the work 

within phases. This model uses graphical table functions to describe these precedence 

relationships in more detail than possible with the Critical Path or PERT methods. For example 

two phases can be described as very tightly coupled with the upstream phase limiting the work 

available throughout the duration of the downstream phase, not just limiting the start or finish of 

work as in the Critical Path method. Homer et al.'s model uses both available work and resources 

to constrain progress. The development process structure in the model described in this work has 

its foundation in the Homer et al. model.   

 

Seville and Kim (1993) built a model based on Kim's earlier model (1988) of product 

development at a computer hardware company. These models simulated the flow of product 

development tasks through two stages:  product design and process design. Seville and Kim use 

different levels of coordination to differentiate between "lean production" and "mass production" 

development organizations (as in Womack et al., 1990). They model coordination between 

product and process engineers with an exogenous Coordination Fraction decision. Seville and 

Kim contributed an explicit structure for modeling the coordination effects on resource quantity 

and effectiveness. They also used a two-stage aging structure and modeled the impacts of factors 

such as productivity to each stage separately.  

 



Ford et al. (1993) studied the interface between two product development groups within an 

electronic entertainment equipment manufacturer (Ford and Paynting, 1995). The model focused 

on the relationships among coordination, schedule, and quality. They explicitly modeled required 

rework due to errors and optional iteration to meet a quality goal. This allowed them to 

incorporate the influences of schedule pressure on decisions about iteration for quality. This 

illustrates modeling cycle time reduction as a tradeoff between time and project quality. Ford et 

al. add a distinction between required and voluntary iteration in product development.  

2.5.3 Evaluation of System Dynamics Models of Product Development Projects 

The existing system dynamics literature has a rich history of modeling development projects. All 

these models contribute to the description and documentation of the tight linkage between 

development resources, resource management, and project performance. Many of these 

structures have been tested and applied adequately to be used as building blocks in the current 

work. But the current research has several important deficits.  

 

First, the literature rarely addresses the development process directly or how it impacts project 

behavior. As a specific example of a deficit in the current research some features of static models 

of development such as the inter-phase precedence relationships used in the Critical Path Method 

or alternative structures have not been adequately incorporated into dynamic models of product 

development. Several researchers indirectly describe the tight linkage of development process 

structure and project performance. But the available research does not explicitly describe the 

linkages between development processes, policies, and their impacts, i.e. no one has proposed 

and tested how process structure and coordination impact performance. This is partially because 

the assumptions and specific process structures used to model the development process in the 

few models which include process structures are not available. The current research addresses 

these deficits by explicitly modeling development processes and their impacts on project 

performance.  

 

Second, no current model incorporates all the significant structures developed for other systems 

and which apply to projects into a single model and tested their combined impacts on project 

behavior. This research develops such a model.  

 



Third, current system dynamics models of projects model only a few specific project phases. No 

current model can be easily altered to describe many different types of projects with different 

numbers of phases and relationships among phases. This research develops such a model.  

2.6 Summary of Literature Evaluation 

The product development literature documents the shift from a sequential functional 

development paradigm to a more concurrent cross-functional team paradigm. It identifies the 

increased impact of dynamic project features such as increased feedback through many iterations 

and time delays. It also identifies the cross functional team as a primary tool for improved 

coordination for improved project performance. However the product development literature 

does not address in depth the cause-effect relationships within individual projects which link 

dynamic features to performance. The system dynamics literature investigates in depth 

development resource structures and their impacts on performance. But little work has been done 

to explicitly model the development process structures and their impact on project performance. 

These two deficits are addressed by the current work.  


